بررسی شاخص‌های تعیین آسیب لرزه‌ای در قاب‌های بتنی و معرفی یک شاخص جدید برای تشخیص طبقات آسیب‌دیده

نوع مقاله : علمی - پژوهشی

نویسندگان

1 گروه عمران، دانشکده فنی، دانشگاه گیلان، رشت، ایران

2 سازه وزلزله، دانشکده مهندسی عمران، دانشگاه صنعتی نوشیروانی بابل،بابل،ایران

چکیده

مطالعه سازه آسیب‌ندیده که منجر به تشخیص طبقات با پتانسیل آسیب‌دیدگی بیشتر در صورت وقوع زلزله بشود، می‌تواند کمک شایانی در کاهش خسارات ناشی از زلزله داشته باشد. برای این منظور باید بتوان خسارت در طبقه را بر اساس دریافت اطلاعاتی از سازه و به کمک شاخص‌های خسارت تعیین کرد. از این حیث در این مقاله، چند قاب خمشی بتنی در برنامه IDARC مدلسازی شده و تحت تحلیل بارافزون قرار گرفتند. با استفاده از نتایج این تحلیل و نیز مقادیر شاخص خسارت پارک و انگ، 5 سناریوی خرابی مشخص شد. برای پایش خسارت مدل‌ها در این سناریوها‌، در بخشی از مطالعه، خرابی کل سازه به کمک شاخص‌های پارک و انگ، رافایل و میر و نیز تغییر مکان نسبی جانبی (دریفت) بررسی شده و ارتباط بین شاخص‌ها ارائه شد و در ادامه کار به کمک شاخص‌های خسارت در مقیاس طبقه، طبقات آسیب‌دیده مشخص شدند و نتایج با یکدیگر مقایسه شد. از معیار آماری پیرسون نیز برای بررسی همبستگی بین داده‌های مربوط به خسارت تیرها و ستون‌های طبقات و نیز معیار دریفت استفاده شد. بر اساس اطلاعات مودال، شاخص خسارت جدیدی به نام MMFDI بر اساس شیب بردار شکل مود و فرکانس ارائه شد و دقت آن در مقایسه با سایر شاخص‌های مودال روی مدل‌های مورد مطالعه بررسی شد. مطالعات نشان داد که دریفت طبقه، شاخص قابل اعتمادی جهت شناسایی طبقه آسیب‌دیده در ساختمان است که همخوانی بسیار مناسبی با شاخص خسارت تیرهای طبقه پارک دارد. همچنین نتایج نشان داد که به کمک شاخص‌های مودال می‌توان طبقه آسیب‌دیده را با دقت خوبی شناسایی کرد که شاخص جدید تعریف‌شده در این مقاله با استفاده از پارامترهای حساس‌تر به آسیب توانست دقت تعیین طبقه یا طبقات محتمل آسیب‌دیدگی را نیز افزایش دهد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Evaluation of Seismic Damage indexes in Concrete Frames and Introducing a New damage index for Detection of Damaged stories

نویسندگان [English]

  • meisam mazloom 1
  • Nosratollah Fallah 2
1 Faculaty of engineering,University of guilan,rasht,iran
2 Structural & Earthquake,Civil Engineering,Babol Noshirvani University of Technology,Babol,Iran
چکیده [English]

Studying the undamaged structure that can identify the stories with the greatest potential for damage in the event of an earthquake, can be a great help in reducing the damage caused by the earthquake. for this purpose , the damage to the story should be determined based on the information obtained from the structure and the calculation of damage indexes . In this paper, several Rc moment frames in the IDARC program are modeled and the Pushover analysis is performed on them. Based on the results of this analysis, 5 damage scenarios were selected. In order to monitor the models' damage in these scenarios, in a part of the study, the total damage of the structure was estimated using Park &Ang Damage Index, Rafael and meyer index and Drift index and the relationship between the indexes was presented. At the Story scale, the affected Stories were detected and the results compared. Subsequently, the affected stories were identified using Story-scale damage indexes and the results were compared. Pearson's statistical criterion was used to investigate the correlation between the damage data of the beams and columns of the floors as well as the drift criterion. Based on the modal information, a new damage index called MMFDI was developed and its accuracy was compared with the other modal indexes on the studied models. Studies have shown that story drift is a reliable index for identifying damaged stories in a building and is very well matched with the results of park&ang beam damage index. The results also showed that with the help of modal indexes, the damaged stories can be accurately identified, and the new index developed in this paper can increase the accuracy of detection the probable damaged stories by using more sensitive parameters.

کلیدواژه‌ها [English]

  • Pushover analysis
  • Damage index
  • drift
  • RC frame
  • Story damage index
  • Modal based damage index
[1] Structural Engineers Association of California (SEAOC)., (1999). Recommended Lateral Force Requirements and Commentary. CA, USA. 
[2] Federal Emergency Management Agency (FEMA450)., (2003). NEHRP Recommended Provisions for Seismic Regulations for New Buildings and Other Structures, Part 1: Provisions. Washington, DC, USA.
[3] Xue, Q. (2008). Developments and case studies of the draft code for performance-based seismic design of buildings in taiwan. In: The 14th World Conference on Earthquake Engineering. Beijing,China.
[4] Erduran, E. Ahmet, Y. (2004). Drift Based Damage Functions for Reinforced Concrete Columns. Computers & Structures, Volume 82, (Issues 2–3), Pages 121-130.
[5] Ghobarah, A. (2004). On drift limits associated with different damage levels. In: Proceedings of International Workshop on Performance-Based Seismic Design, McMaster University, Bled.
[6] Haselton, C, Deierlein, G. (2007). Assessing Seismic Collapse Safety of Modern-Reinforced Concrete Moment-Frame Buildings. Berkeley, Calif. : Pacific Earthquake Engineering Research Center.
[7] Habibi, A-R. Izadpanah, M. (2012). New Method for the Design of Reinforced Concrete Moment Resisting Frames with Damage Control. Scientia Iranica, Volume 19, (Issues 2), Pages 234-241.
[8] Yakut, A. Solmaz, T. (2012). Performance based Displacement Limits for Reinforced Columns under Flexure. In: 15 WCEE, LISBOA.
[9] Sharifi, A. Banan, M-R. and Banan, M-R. (2012). A Strain-Consistent Approach for Determination of Bounds of Ductility Damage Index for Different Performance Levels for Seismic Design of RC Frame Members. Engineering Structures, Volume 37, Pages 143-151.
[10] Federal Emergency Management Agency (FEMA273). (1997). NEHRP Guidelines for the Seismic Retrofit of Buildings. Washington, DC, USA.
[11] Reinhorn, A. Hwasung, R. Sivaselvan, M. Kunnath, S. Valles, E. Madan, A. Li, C. Lobo ,R. and Park, J. (2009). IDARC 2D Version 7.0: A Program for the Inelastic Damage Analysis of Structures. University at Buffalo, the State University of New York:
[12] Park YJ, Reinhorn AM, Kunnath SK (1987). IDARC: inelastic damage analysis of reinforced concrete frame-shear-wall. University at Buffalo, the State University of New York:
[13] Cawley, P. Adams, R.D. (1979). The location of defects in structures from measurements of natural frequencies Strain Analysis, Volume 14, No.2, Pages 49-57.
[14] West, W. M. (1984). Illustration of the use of modal assurance criterion to detect structural changes in an orbiter test specimen. In: Proceedings of the Air Force Conference on Aircraft Structural Integrity, Pages 1-6.
[15] Leiven, N. A. J. Ewins, D. J (1988). Spatial correlation of mode shapes, the Coordinate Modal Assurance Criterion (COMAC). In: Proceedings of the Sixth International Modal Analysis Conference, Vol. 1, Pages. 690–695.
[16] Lu, Q. Ren, G. and Zhao, Y. (2002).. Multiple  Damage  Location  with  Flexibility  Curvature and Relative Frequency Change for Beam Structures , Journal of Sound and  Vibration, Volume 253, (Issues 5), Pages 1101-1114.
[17] Pandy, A. K. Biswas, M. (1994). Damage detection in structures using changes in flexibility , Journal of Sound and  Vibration, Volume 169, (No. 1), Pages 3-17.
[18] Ndambi. J, Vantomme. and K. Harri. (2002). Damage assessment in reinforced concrete beams using eigen frequencies and mode shape derivatives. Engineering Structures, Volume 24, Pages 501-515.
[19] Wang, J-F. Lin, C-C. Yen, and S-M. (2007). A story damage index of seismically-excited buildings based on modal frequency and mode shape. Engineering Structures, Volume 29, Pages 2143-2157.
[20] Horiuchi, k. (2014). STRUCTURAL HEALTH MONITORING WITH THE MODAL STRAIN ENERGY METHOD DURING SEISMIC LOADING. master of science in Civil Engineering. California State University, Sacramento.
[21] Arfiadi,Y. Frans,R (2017). Comparative study of mode shapes curvature and damage locating vector methods for damage detection of structures , Procedia engineering, Volume 171, Pages 1263-1271.
[22] Patil Jaya, Alandkar, P. M. (2016). DRIFT ANALYSIS IN MULTISTORIED BUILDING , INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY, Volume 5, Pages 490-505.
[23] Padgett, J. E. (2007). Seismic Vulnerability Assessment of retrofitted bridges using probabilistic methodes. doctorate in Civil Engineering. Georgia institute of technology.
[24] Roufaiel, M.S.L. Meyer, C. (1987).. Analytical modeling of hysteretic behavior of Rc frames , J. Struct. Eng, Volume 113, Pages 429-444.
[25] B.F. R.Pinho, M.Savoia,R,Francia, (2009). Verification of displacement-based adaptive pushover through multi-ground motion incremental dynamic analyses. Engineering Structures, Volume 31, (Issues 8), Pages 1789-1799.
[26] Spiegel, M. (1992). Theory and Problems of Statistics. London: McGraw-Hill: Schaum Publishing.