روش جدید برآورد فرکانس طبیعی ساختمان‌های بلند هرمی برای سیستم لوله در لوله و لوله با دیوار برشی

نوع مقاله : علمی - پژوهشی

نویسندگان

1 عضو هئیت علمی دانشگاه محقق اردبیلی

2 دانشجوی دکتری

3 استادیار گروه مهندسی عمران - دانشگاه محقق اردبیلی

چکیده

نیاز انسان به فضاهای مناسب و کافی برای زندگی و کار از یک سو و تراکم جمعیت و افزایش قیمت زمین و استفاده هر چه بیشتر از ساختمان‌هایی با ارتفاع بالا نیاز به تحقیقات در خصوص این سازه‌ها نیز افزایش می‌‌یابد. سیستم لوله‌ای هرمی نیز یکی سیستم‌های سازه‌ای مناسب برای ساختمان‌هایی با ارتفاع بالاست. هدف از این تحقیق بدست آوردن یکی از ویژگی‌های مهم دینامیکی یعنی فرکانس طبیعی (ω) برای تعدادی از ساختمان‌های بلند با سیستم لوله‌ای، لوله‌ای هرمی است و یک روش تقریبی نیز برای تجزیه، تحلیل و محاسبه فرکانس طبیعی با سیستم لوله‌ای هرمی ترکیبی با دیوار برشی، لوله در لوله هرمی ارائه می‌‌شود. اندازه زاویه هرم قاب لوله‌ای نسبت به امتداد قائم (طول ارتفاع) سازه متغیر می‌باشد روش پیشنهادی در اینجا ما را قادر می‌سازد تا با کمک برنامه نویسی رایانه‌ای، فرکانس طبیعی ساختمان‌های بلند لوله‌ای عمودی و هرمی شکل را محاسبه کنیم و مدل ها به دو صورت المان محدود و روش تحلیلی ریاضی مورد تجزیه و تحلیل قرار گرفتند. نتایج حاکی از آن است که روش مورد بررسی فرکانس طبیعی را به درستی محاسبه می‌کند و انطباق خوبی با نتایج المان محدود دارد و سازگاری بهتری با سازه‌های بدون زاویه هرمی و با ارتفاع بیشتر دارد و مقدار خطای محاسباتی حاصله بسیار کم می‌‌-باشد. نتایج مدل پیشنهادی ریاضی که روشی آسان برای استفاده و روش قابل فهم از ویژگی‌های دینامیکی سازه و اثر تغییرات زاویه برفرکانس می‌پردازد. همچنین این روش تحلیلی کمترین خطا را برای سیستم‌های لوله در لوله و بیشترین خطا را برای سیستم لوله‌ای ترکیبی با دیوار برشی هرمی و قائم دارند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

New method of estimating natural frequency of tall pyramidal buildings for tube-in-tube and tube with shear wall systems

نویسندگان [English]

  • Yaghoub Mohammadi 1
  • Mohammad Babaei 2
  • Amin Ghannadiasl 3
1 Associated Prof. Civil Engineering Department University of Mohaghegh Ardabili
2 PhD student of Structural Engineering, University of Mohaghegh Ardabili
3 Assistant Professor Department of Civil Engineering - University of Mohaghegh Ardabili
چکیده [English]

The need for adequate and appropriate living and working spaces and population density and the increasing cost of land and use of high-rise buildings requires growing research on these structures. The tube system is one of the most suitable structural systems for high-rise buildings. The purpose of this study was to obtain one of the most important dynamic properties, namely the natural frequency (ω) for a number of tall buildings with a pyramidal tube system. A tube-in-tube approximate method for analyzing and calculating the natural frequency of a combined pyramidal tube system with shear wall pyramid is presented. The size of the pyramid angle of the tube frame varies with the length (height) of the structure. The proposed method enables us to calculate the natural frequency of vertical and curved tall buildings with the help of computer programming. The models were analyzed using finite element form and mathematical analytical method. The results show that the investigated method correctly calculates the natural frequency and is in good agreement with the finite element results and has better compatibility with pyramidal angle structures with higher altitude, and the resulting computational error is much lower. The results of the proposed mathematical model provide an easy-to-use method for understanding the dynamic properties of structures and the effects of angle-frequency variations. Furthermore, this analytical method has the least error for tube systems with tube-in-tube and the highest error for shear wall pyramidal systems.

کلیدواژه‌ها [English]

  • "Pyramidal tube system"
  • "Natural frequency"
  • "Flexural stiffness"
  • "Tall building"
  • 'Tube-in-tube"
[1] Khodaie, N. (2019). Parametric study of the crosswind response of tall buildings using frequency domain analysis and random vibration method. Journal of Structural and Construction Engineering (JSCE), doi: 10.22065/jsce.2019.190732.1884.
[2] Mahmoudabadi, M. Hasani S.M.R. and Zaefi, M. (2018). Approximate analysis of framed tube structures for static parabolic shape lateral loads. Journal of Structural and Construction Engineering (JSCE). doi: 10.22065/jsce.2018.140936.1609.
[3] Wang, Q. (1996). Sturm-Liouville Equation for Free Vibration of a Tube-in-Tube Tall Building. Journal of Sound and Vibration, 191 (9), 349-355.                                                                                                                           
[4] Lee, W.H. (2007). Free Vibration Analysis for Tube-in Tube Tall Buildings.  Journal of Sound and Vibration, 303, 287-304.                                                                                                                                                                      
[5] Etedadi Aliabadi, F. and Memarpour, M. (2019). Investigation of the Seismic Behaviour of Framed Tube Buildings Considering Soil Structure Interaction. Journal of Structural and Construction Engineering (JSCE), 6 (2), 119-140.                                                                                                                                                                                
[6] Park, Y.K. Kim, H.S. and Lee, D.G. (2014). Efficient structural analysis of wall–frame structures. The Structural Design of Tall and Special Buildings, 23, 740-59.                                                                                                                            
[7] Mohammadnejad, M. (2015). A new analytical approach for determination of flexural, axial and torsional natural frequencies of beams. Structural Engineering and Mechanics an International Journal, 55, 655-74.   
[8] Kamgar, R. Rahgozar, R. and Tavakoli, R. (2018). The best location of belt truss system in tall buildings using multiple criteria subjected to blast loading. Civil Engineering Journal, 4 (6), 1338-1353.     
[9] Saffari, H. and Mohammadnejad, M. (2015). on the application of weak form integral equations to free vibration analysis of tall structures. Asian Journal of Civil Engineering (BHRC), 16 (7), 977-99.                                                                                            
[10] Rahgozar, R. (2017).  Determination of optimum location for flexible outrigger systems in tall buildings with constant cross section consisting of framed tube, shear core, belt truss and outrigger system using energy method. International Journal of Steel Structural, 17 (1), 1-8.                                                                                                                                                                  
[11] Bozdogan, K.B. (2009). An approximate method for static and dynamic analysis of symmetric wall-frame buildings. The Structural Design of Tall and Special Buildings, 18 (3), 279-290.                                                                                                    
[12] Bozdogan, K.B. (2013). Free vibration analysis of asymmetric shear wall-frame buildings using modified finite element transfer matrix method. Structural Engineering and Mechanics, 46 (1), 1-17.                                                                                               
[13] Safafri, H. Mohammadnejad, M. and Bagheripour, M.H. (2012). Free vibration analysis of no prismatic beams under variable axial forces. Structural Engineering and Mechanics an International Journal, 43(5), 561-582.                                                           
[14] Mohammadnejad, M. Safari H, Bagheripour MH. (2014). An analytical approach to vibration analysis of beams with variable properties, Arabian Journal for Science and Engineering, 39, 2561-2572.                                                                          
[15] Mohammadnejad, M. and Haji, Kazemi. (2018). A new and simple analytical approach to determining the natural frequencies of framed tube structures. Structural Engineering and Mechanics, 65 (1), 111-120.
[16] Ramezani, M. Mohammadizadeh, M.R. and Shojaee, S. (2019). A new approach for free vibration analysis of no uniform tall building structures with axial force effects. The Structural Design of Tall and Special Buildings, 28 (5), https://doi.org/10.1002/tal.1591.                                                                                
[17] Soltani, M. Asgarian, B. and Jafari, D.V. (2019). Elastic instability and free vibration analyses of axially functionally graded Timoshenko beams with variable cross-section. Journal of Structural and Construction Engineering (JSCE), doi: 10.22065/JSCE.2019.143692.1627.
[18] Stafford Smith, B. and Coull, A., "Tall Building Structures: Analysis and Design", Wiley, New York,
(1991).
[19] Coull, A. and Smith, B. S. (Eds.). (2014). Tall Buildings: The Proceedings of a Symposium on Tall Buildings with Particular Reference to Shear Wall Structures. Held in the Department of Civil Engineering, University of Southampton, April 1966. Elsevier.
[20] Taranath, S. D. NB, M. and Patil, M. B. (2014). Comparative study of pentagrid and hexagrid structural system for tall building. Journal of Civil Engineering Environtal Technology, 1, 10-15.
[21] Chang, P. C. (1985). Analytical modeling of tube-in-tube structure. Journal of structural Engineering, 111(6), 1326-1337.
[22] - Takabatake, H. Takesako, R. Kobayashi, M. (1998). A simplified analysis of doubly symmetric tube structures by the finite difference method, The Structural Design of Tall Buildings5(2), (111-128.
[23] Pekau, O. A. Zielinski, Z. A. and Lin, L. (1995). Displacement and natural frequencies of tall building structures by finite story method. Computers & structures, 54(1), 1-13.
[24] Kuang, J. S. and Ng, S. C. (2004). Coupled vibration of tall building structures. The Structural Design of Tall and Special Buildings, 13(4), 291-303.
[25] Hoenderkamp, J. C. D., & Bakker, M. C. M. (2003). Analysis of high‐rise braced frames with outriggers. The structural design of tall and special buildings, 12(4), 335-350.
[26] Hoenderkamp, J. C. D. (2008). Second outrigger at optimum location on high‐rise shear wall. The structural design of tall and special buildings, 17(3), 619-634.
[27] Meftah, S. A. and Tounsi, A. (2008). Vibration characteristics of tall buildings braced by shear walls and thin‐walled open‐section structures. The Structural Design of Tall and Special Buildings, 17(1), 203-216.
[28] Kazaz, I. and Gulkan, P. (2012). An alternative frame‐shear wall model: continuum formulation. The Structural Design of Tall and Special Buildings, 21(7), 524-542.
[29] Guo, G., Chen, X., Yang, D., & Liu, Y. (2019). Self-similar inter-story drift spectrum and response distribution of flexural-shear beam with nonuniform lateral stiffness. Bulletin of Earthquake Engineering, 17(7), 4115-4139. DOI:10.1007/s10518-019-00617-0
[30] ETABS, "V.18 CSI", Computer & Structures, Inc., Berkeley, California, USA, (2016).
[31] MATLAB "V.8.1", Mathworks Inc., California,USA, (2016).