بررسی آزمایشگاهی تاثیر درجه حرارت‌های بالا بر خصوصیات مکانیکی و جذب انرژی بتن مبتنی بر سیمان کلسیم آلومینات مسلح شده با الیاف ترکیبی

نوع مقاله : علمی - پژوهشی

نویسندگان

1 گروه مهندسی عمران، دانشکده فنی و مهندسی، دانشگاه لرستان، ایران

2 گروه عمران - دانشکده فنی و مهندسی - دانشگاه لرستان - خرم آباد - ایران

3 دانشیار/دانشگاه صنعتی نوشیروانی بابل

چکیده

سازه‌ها ضمن اینکه به عنوان یکی از اصلی‌ترین منابع و سرمایه‌های هر کشور محسوب می‌شوند، به دلیل استفاده طولانی مدت و مداوم، و ضرورت حفظ جان انسان‌ها باید همواره پایداری و ایمنی کافی را دارا باشند. بر این اساس چگونگی رفتار بتن در معرض درجه حرات‌های بالا از اهمیت بالایی برخوردار است. استفاده از سیمان‌های با آلومین بالا به دلیل ضعف قابل توجه سیمان‌های معمولی در دماهای بالاتر از 300 درجه سلسیوس، مورد توجه محققین قرار گرفته است. در این مطالعه ضمن استفاده از سیمان کلسیم آلومینات IRC40 به جای سیمان معمولی، از ترکیب دو نوع الیاف فولادی و الیاف پلی‌پروپیلن، در ساخت بتن استفاده شده است. هدف از این پژوهش ارزیابی اثر درجه حرارت‌های بالا بر خصوصیات مکانیکی بتن ساخته شده از سیمان کلسیم آلومینات، و محاسبه جذب انرژی نمونه‌های بتنی پس از قراردهی آن‌ها در مجاورت دماهای 600،110 و 800 درجه سلسیوس می‌باشد. در همین راستا از 4 طرح اختلاط بر مبنای استفاده از چهار سطح الیاف ترکیبی به مقدار 0، 0.5، 1و 1.5 درصد برای ساخت مجموعا ً108 نمونه، شامل نمونه‌‌های فشاری مکعبی 10×10×10سانتی‌متر، نمونه‌های کششی استوانه‌ای با قطر 10 و ارتفاع 20 سانتی‌متر و تیر‌های خمشی با ابعاد 6×8×32 سانتی‌متر استفاده شد. مطابق با نتایج آزمایشگاهی مشاهده شد که استفاده از 1.5 درصد الیاف ترکیبی موجب افزایش قابل ملاحظه مقادیر خصوصیات مکانیکی شامل مقاومت فشاری، مقاومت کششی و مقاومت خمشی و همچنین ارتقاء سطح جذب انرژی می‌گردد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Laboratory study of the effect of high temperatures on mechanical properties and energy absorption of concrete based calcium aluminate reinforced with hybrid fiber

نویسندگان [English]

  • saeed kordi 1
  • Fereydoon Omidinasab 2
  • mehdi dehestani 3
1 lorestan university, iran
2 civil, engineering, lorestan university, khorramabad, iran
3 Civil Engineering, Babol Noshirvani University of Technology, Babol, Iran
چکیده [English]

Structures are considered as one of the main sources and resources of each country, due to their long-term and continuous use and the need to preserve human lives; they must always have sufficient stability and safety. Accordingly, the behavior of concrete is subject to the high degree of temperature is very important. The use of high-alumina cement has attracted the attention of researchers because of the considerable weakness of conventional cements at temperatures above 300 ° C. In this study, using the cement of IRC40 Calcium Aluminate instead of conventional cement, the combination of two types of steel fibers and polypropylene fibers was used in the manufacture of concrete. The purpose of this study was to evaluate the effect of high temperatures on the mechanical properties of Calcium Aluminate cement concrete and calculate the energy absorption of concrete samples after depositing them in the vicinity of 600,110 and 800 degrees Celsius. In the same way, four mix composition based on the use of four levels of 0, 0.5, 1, and 1.5% hybrid fibers were used to make a total of 108 samples, including cube compressive specimens of 10 × 10 × 10 cm, cylindrical tensile specimens with a diameter of 10 and a height of 20 cm and flexural beams with dimensions of 6 × 8 × 32 cm. According to laboratory results, the use of 1.5% of the hybrid fiber increased the amount of mechanical properties, including compressive strength, tensile strength and flexural strength, as well as increased energy absorption.

کلیدواژه‌ها [English]

  • Concrete
  • Calcium Aluminate Cement
  • High temperature
  • Mechanical properties
  • Steel fibers
  • Polypropylene fibers
[1] Behbahani, H.P. Nematollahi, B. Mohd Sam, A.R. Lai, F. (2012). Flexural behavior of steel-fiber-added-RC (SFARC) beams with C30 and C50 classes of concrete. International Journal of Sustainable Construction Engineering & Technology, Volume 3, Pages 54-64.
[2] J.-H. Lee, (2017). Influence of concrete strength combined with fiber content in the residual flexural strengths of fiber reinforced concrete. Composite Structures, Volume 168, Pages 216-225.
[3] Hua, Yang. Hui, Zhao. Faqi, Liu. (2018). Residual Cube Strength of Coarse RCA Concrete after Exposure to Elevated Temperatures. Fire and Materials Journal, Volume 42, Pages 424-435.
[4] Memon, S.A. Shah, S.F.A. Khushnood, R.A. Baloch, W.L. (2019). Durability of sustainable concrete subjected to elevated temperature–A review. Constr. Build. Mater, Volume 199, Pages 435–455.
[5] Behfarnia, K. Shahbaz, M. (2018). The effect of elevated temperature on the residual tensile strength and physical properties of the alkali-activated slag concrete. J. Build. Eng, Volume 20, Pages 442–454.
[6] Khaliq, W. Anis Khan, H. (2015). High temperature material properties of calcium aluminate cement concrete. Constr. Build. Mater, Volume 94, Pages 475–487.
[7] Vejmelková, E. Černý, R. (2013). Thermal properties of PVA-Fiber reinforced cement composites at high temperatures. mechanics and materials, Volume 377, Pages 45-49.
[8] Mohmel, S. (2001). The influence of microsilica on the course of hydration of monocalcium aluminate. In: international conference on calcium aluminate cements. Edinburg (Escocia), Pages 319–30.
[9] Khaliq, W. Khan, H.A. (2015). High temperature material properties of calcium aluminate cement concrete. Construction and Building Materials, Volume 94, Pages 475-487.
[10] Cree, D. Green, M. Noumowe, A. (2013). Residual strength of concrete containing recycled materials after exposure to fire: a review. Construction and Building Materials, Volume 45, Pages 208-223.
[11] Lea, F.C. Stradling, R. (1922). The resistance to fire of concrete and reinforced concrete. Journal of the Society of Chemical Industry Banner., Volume 41, Pages 395R-396R.
[12] Phan, L. T. (2002) .High Strength Concrete at high temperature: An Overview. In: Utilization of High Strength/High Performance Concrete. Leipzig, Pages 501-518.
[13] Kalifa, P. Menneteau, F. D. Quenard, D. (2000). Spalling and Pore Pressure in HPC at High Temperatures. Cement and Concrete Research, Volume 30, Pages 1915-1927.
[14] Gao, D. Yan, D. Li, X. (2012). Splitting strength of GGBFS concrete incorporating with steel fiber and polypropylene fiber after exposure to elevated temperatures. Fire Saf. J. Volume 54, Pages 67–73.
[15] Zeiml, M. Leithner, D. Lackner, R. Mang, H.A. (2006). How do polypropylene fibers improve the spalling behavior of in-situ concrete. Cem Concr. Res, Volume 36, Pages 929–942.
[16] Shihada, S. (2011). Effect of polypropylene fibers on concrete fire resistance. J. Civ. Eng. Manage, Volume 17, Pages 259–264.
[17] Aydın, S. Yazıcı, H. Baradan, B. (2008). High temperature resistance of normal strength and autoclaved high strength mortars incorporated polypropylene and steel fibers. Constr. Build. Mater, Volume 22, Pages 504–512.
[18] Hertz, K. D. (2003). Limits of spalling of fire exposed concrete. Fire Safety Journal, Volume 38, Pages 103-116.
[19] Kalifa, P. (2001). High temperature behavior of HPC with polypropylene fibers: from spalling to microstructure. Cement and Concrete Research, Volume 31, Pages 1487-1499.
[20] Choe, G. Kim, G. Yoon, M. Hwang, E. Nam, J. Guncunski, N. (2019). Effect of moisture migration and water vapor pressure build-up with the heating rate on concrete spalling type. Cement and Concrete Research, Volume 116, Pages 1-10.
[21] Tan, X. Chen, W.  Wang, J. Yang, D. Qi, Y. Ma, Y. Wang, X. Ma, S. Li, Ch. (2017). Influence of high temperature on the residual physical and mechanical properties of foamed concrete, Construction and Building Materials, Volume 135, Pages 203-211.
[22] Liu, J.-Ch. Tan, K.H. (2017). Fire resistance of strain hardening cementitious composite with hybrid PVA and steel fibers. Construction and Building Materials, Volume 135, Pages 600-611.
[23] Bodnárová, L.  Hroudová, J. Brozˇovsky´, J. Zach, J. Valek, J. (2017). Behaviour of cement composites with lightweight and heavyweight aggregates at high temperatures. Period. Polytech. Civ. Eng, Volume 61, Pages 272–281.
[24] Caggiano, A. Etse, G. (2015). Coupled thermo-mechanical interface model for concrete failure analysis under high temperature. Computer Methods in Applied Mechanics and Engineering, Volume 289, Pages 498-516.
[25] Luccioni, B.  et al. (2018). Experimental and numerical analysis of blast response of high strength fiber reinforced concrete slabs. Engineering Structures, Volume 175, Pages 113-122.                    
[26] Caggiano, A. Schicchi, D.S. Etse, G. Ripani, M. (2018). Meso-scale response of concrete under high temperature based on coupled thermo-mechanical and pore-pressure interface modeling. Engineering Failure Analysis, Volume 85, Pages 167-188.
[27] Ruby, S. Geethanjali, G. Varghese, C.J. Priya, P.M. (2014). Influence of Hybrid Fiber on Reinforced Concrete. International Journal of Advanced Structures and Geotechnical Engineering, Volume 03, Pages 40-43.
[28] Jameran, A. Ibrahim, S. Yazan, S. Rahim, A. (2015). Mechanical properties of steel-polypropylene fibre reinforced concrete under elevated temperature. Procedia Engineering, Volume 125, Pages 818-824.
[29] RILEM TC 129-MHT. (2000). Test methods for mechanical properties of concrete at high temperatures, Part 4 – Tensile strength for service and accident conditions, Mater. Struct. 33, Pages 219–223.
[30] RILEM TC 129-MHT. (1995). Test methods for mechanical properties of concrete at high temperatures – compressive strength for service and accident conditions, Mater. Struct. 28, Pages 410–414.
[31] Baradaran-Nasiri, A. Nematzadeh, M. (2017). The effect of elevated temperatures on the mechanical properties of concrete with fine recycled refractory brick aggregate and aluminate cement. Construction and Building Materials, Volume 147, Pages 865-875.
[32] Lau, A. Anson, M. (2006). Effect of high temperatures on high performance steel fibre reinforced concrete. Cement and Concrete Research, Volume 36, Pages 1698-1707.