تحلیل تجربی ، تئوری و شبیه‌سازی‌ عددی ‌ورق‌های ‌فلزی ‌AL3105، st12، ck45 با لایه چینی متقابل تحت ضربه سقوط آزاد

نوع مقاله : علمی - پژوهشی

نویسندگان

1 کارشناسی ارشد

2 عضو هیات علمی

3 دانشگاه لرستان

چکیده

در این ‌تحقیق ورق های‌ فلزی آلومینیوم Al3105،ck45 و St12 بالا یه چینی متقابل در برابر بار ضربه ای به صورت تجربی، تئوری و عددی بررسی شده اند. درمدل عددی ورق ها به صورت سه لایه ای با لایه چینی متقابل به ترتیب از بالا به پایین ck45-st12-ck45،st12-ck45-st12،Al3105-ck45-Al3105،ck45-AL3105-ck45 ،st12-Al3105-st12،Al3105-st12-Al3105 تحت ضربه سقوط‌آزاد قرارگرفته اند و تحلیل شده اند. برای صحه گذاری روش عددی، ازمدل تجربی نیز استفاده شده است. برخورد به صورت سقوط آزاد وزنه بوده و ارتفاع سقوط 12سانتی متر می باشد. ورق‌های مورد استفاده از جنس st12 ،Al3105،ck45 با ابعاد 220 در230 میلیمترمربع و هرکدام با ضخامت 1 میلی‌مترتهیه شده ولایه چینی متقابل که در قسمت بالاذکرشد روی هم قرارگرفته و توسط پیچ ومهره بهم متصل می شوند. ورق ها به صورت کاملا آزاد برروی فیکسچر قرارمی گیرند. پیچ مورد استفاده ازنوع پیچ با استانداردdin933 تمام رزوه هستند. در روش تجربی شتاب ضربه زننده توسط سنسور شتاب‌سنج اندازه‌گیری شده و تغییر شکل ماندگار ورق پس از اتمام ضربه اندازه‌گیری می‌شود. پارامترهای مورد ارزیابی پژوهش شامل مقدار شتاب ضربه بر روی ورق، میزان تغییرشکل ماندگار و مقدار جذب انرژی برای ورق‌های می باشد. همچنین در روش تئوری نیز روابط مرتبط با ورق های جدارنازک بصورت دینامیکی بررسی گردیده است.برای مدل‌سازی عددی از نرم‌افزار المان محدود آباکوس استفاده شده است. مقایسه نتایج حاصل از روش تجربی و عددی نشان می‌دهد که این دو روش تحقیق دارای نتایج نزدیک به هم ‌می‌باشند. همچنین نتایج نشان می‌دهد که جذب انرژی در ورق های بالایه گذاری Al3105-st12-Al310 بیشتر از ورق های دیگرمی باشد، همچنین شتاب در ورق های بالایه چینی ck45-st12-ck45 بیشتر از ورق های دیگر می باشند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Experimental and Numerical investigation on CK45, St12, Al3105 with layers under drop test free loading

نویسندگان [English]

  • Arash Bashiri 1
  • Mojtaba Hosseini 2
  • Hossein Hatami 3
1 M.Sc.
2 civil engineering, lorestan university
3 Lorestan University
چکیده [English]

In this investigation, the Al sheet metals Al3105, Ck45 and St12 with layers under impact drop test free loading are tested experimentally and numerically. The sheets are tested with 3-layers under impact free loading numerically. for comparing, the experimental test is tested. The height is 12 cm with free impact loading. The dimention of specimens are 220*230 cm2. with screw the specimens are tied. The fixure are maded with steel and the specimens are fixed on the ficture freely. The screew has Din933 standard. The acceleration data are repoted with accelareation sensor. The deformation are reported with hammer test. Also with theoretical method, the shells are invetigated with the dynamic equations. For numerical modeling, the ABAQUS is used. The resualts are shown that two method are the same resulats. Also the resualts are shown that the energy absorption is more for Al3105-St12-Al3105 to other sheets. Also the acceleration is more for Ck45-St12-Ck45 to other sheets. The acceleration data are repoted with accelareation sensor. The deformation are reported with hammer test. Also with theoretical method, the shells are invetigated with the dynamic equations. For numerical modeling, the ABAQUS is used. The resualts are shown that two method are the same resulats. Also the resualts are shown that the energy absorption is more for Al3105-St12-Al3105 to other sheets. Also the acceleration is more for Ck45-St12-Ck45 to other sheets.

کلیدواژه‌ها [English]

  • Free drop test
  • Deformation
  • Impact Acceleration
  • Energy Absorption
  • Shell
[1] Qian Y., Swanson S.R., “A Comparison of Solution Techniques for Impact Response of Composite Plates”, Composite Structures, Vol. 14, 1990, pp. 177-192.
[2] Her S.C., Liang Y.C., “The Finite Element Analysis of Composite Laminates and Shell Structures Subjected to Low Velocity Impact”, Composite .
 [3] Caprino G., Spataro G., Del Luongo S., “Low- Velocity Impact Behavior of Fiberglass-Aluminum Laminates”, Composites: Part A, Vol.35, 2004, pp.
[4] Zarei, Hamed, Mojtaba Sadighi, and Giangiacomo Minak. "Ballistic analysis of fiber metal laminates impacted by flat and conical impactors." Composite Structures 161 (2017): 65-72.
 [5] Sabouri H., Ahmadi H,. Liaghat G.H., “Ballistic, Impact Perforation Into Glare Target: Experiment Numerical Modeling and Investigation of Aluminium Stacking Sequence”, International Journal Vehicle Structures &
Systems, Vol. 3, No. 1, 2011, pp. 178-183.
[6] T. Kitada, 1998, “Ultimate strength and ductility of concrete-filled steel bridge piers”, Engineering Structures, Vol. 20, Nos 4~i, pp. 347-354.
[7] Malekzadeh, P., and Setoodeh, A.R., Large Deformation Analysis of Moderately Thick Laminated Plates., Composite Structures., 2006; no.4, 80: 569-579.
 [8] F. Ustaa, F. Mullaoglu, H. S. Türkmen, D. Balkan, Z. Mecitoglu, H. Kurtaran, E. Akay, 2016, “Effects of Thickness and Curvature on Impact Behaviour of Composite Panels”, Journal of Procedia Engineering, No.167, pp 216-222.
[9] Babaei H, Mirzababaie Mostofi T, Alitavoli M (2015) Experimental study and analytical modeling for inelastic response of rectangular plates under hydrodynamic loads. Journal of Modares Mechanical Engineering 15(4): 361-368. (In Persian)
[10] M. Choubini, Gh. H. Liaghat, M. Hossein Pol, 2015, “Investigation of energy absorption and deformation of thin walled tubes with circle and square section geometries under transverse impact loading”, Modares Mechanical Engineering, Vol. 15, No. 1, pp. 75-83, (In Persian).
[11 Hedayatian, M. Liaghat, GH. Rahimi, G. Pol, MH. Hadavinia, H and Zamani, R., “Investigation of the high velocity impact behavior of grid cylindrical composite structures,” Polymer Composites, Vol. 38, No. 11, pp. 2603 -8, 2017.
[12] A.Bidi, A. Liaghat, Gh. and Rahimi, Gh., 2016, “Experimental and numerical analysis of impact on curved steel- polyurea bi-layer panels”, In Persian, Journal of Science and Technology of Composites, Vol. 3, No. 3, pp. 207-214 (In Persian).
[13] Olsson, R. 1996. Improved Theory for Contact Indentation of Sandwich Panels. Journal of AIAA Vol.34n6:1238-1244.
[14] Choi, I.H., and C.S. Hong. 1994. New Approach for Simple Prediction of Impact Force History on Composite laminates. Journal of AIAA Vol.132n10:2072-272
[15] Mittal, R., " A simplified analysis of the effect of transverse shear on the response
of elastic plates to impact loading", 1987, International Journal of Solids Structures, Vol. 23, No. 8, pp. 1191-1203.
[16] Segletes, B., "The erosion transition of tungsten-alloy long rods into aluminum
targets", 2006, International Journal of Solids Structures, Vol. 44, pp. 2168-2191.
[17] H. J. Xue, Preliminary assessment of sandwich plates subject to blast loads, International Journal of Mechanical Sciences, Vol. 45, No. 1, pp. 687–705., 2003.
[18] Smetankina, N., Shupikov, A., Sotrikhin, S., Yareschenko, V., "Dynamic response
of an elliptic plate to impact loading Theory and experiment", 2007, International
Journal of Impact Engineering, Vol. 34, pp. 264–276.
[19] Gupta, N., Iqbal, M., Sekhon, G., " Effect of projectile nose shape, impact velocity
and target thickness on deformation behavior of aluminum plates", 2007,
International Journal of Solids and Structures, Vol. 44, pp. 3411–3439.
[20] Katnam, K. B., et al.: The Static Failure of Adhesively Bonded Metal Laminate Structures: A Cohesive  Zone  Approach.  Journal  of  Adhesion  Science  and  Technology,  2011,  25(10),  p. 1131-1157.
[21] Miranda V, Teixeira-Dias F, Pinho-da-Cruz J, Novo F (2010) The role of plastic deformation on the impact behaviour of high aspect ratio aluminium foam-filled sections. Int J Nonlinear Mech 45(5): 550-561
[22] Rajendran R, Moorthi A, Basu S (2009) Numerical simulation of drop weight impact behaviour of closed cell aluminium foam. Mater Design 30(8): 2823-2830.
[23] D. V. Fleck, The resistance of clamped sandwich beams to shock loading, Journal of Applied Mechanics, Vol. 71, No. 1, pp. 386–401, 2004.
[24]    Sinke, J. and Johansson, S.A.H.: Fatigue and Damage Tolerance Aspects of Metal Laminates. in ICAF 2009, Bridging the Gap between Theory and Operational Practice, Bos, M.J. Editor, 2009  Springer Netherlands, p. 585-599
[25]  Crouch, I.: Adhesively-bonded Aluminium Laminates - Their Future as Energy-absorbing, Structural Materials. in Conference on New Materials and Processes for Mechanical Design (1988 : Brisbane, Qld.), Barton, ACT, 1988, pp. 21-26. English.
 [26] Hazizan, M. A. C., W.J., “The Low Velocity Impact Response of Foam-Based Sandwich Structures“ Composites: Part B Vol. 33, No. 1, pp. 193-204, 2002.
[27] Pacchione, M. and Hombergsmeier, E.: Hybrid Metal Laminates for Low Weight Fuselage Structures.  in: S. Pantelakis, C. Rodopoulos, Engineering Against Fracture, Eds., pp. 41-57: Springer Netherlands, 2009
[28]  Apalak,M. K. and Yildirim, M.: Effect of Adhesive Thickness on Transverse Low-Speed Impact Behavior of Adhesively Bonded Similar and Dissimilar Clamped Plates. Journal of Adhesion Science and Technology, Vol. 25, No. 19, pp. 2587-2613, 2011/01/01, 201
[29] Lanciotti,  A.  and  Polese, C.:  Fatigue  Properties  of  Monolithic  and  Metal-laminated Aluminium Open-hole Specimens. Fatigue & Fracture of Engineering Materials & Structures,2008 , 31(10), p. 911-917.
[30] Chengjun Liu a, Y. X. Z., L. YebHigh, “Velocity Impact Responses of Sandwich Panels with Metal fibre Laminate Skins and Aluminum Foam Core“ International Journal of Impact Engineering Vol. 100, No. 1, pp. 139-153, 2017.
[31] Cao, J. and Grenestedt, J.L., “Design and Testing of Joints for Composite Sandwich/Steel Hybrid Ship Hulls” Composites: Part A, Vol. 35, Issue 9, pp. 1091–1105, 2004
[32]  Tekyeh-Marouf, B. Bagheri, R. and Mahmudi, R.: Effects of number of layers and adhesive ductility on impact behavior of laminates. Materials Letters, Vol. 58, No. 22–23, pp. 2721-2724, 2004.
[33] Impact Mechanics, Shakeri M., Darvizeh A., ISBN:978-600-153-000-5, 2th, 1390