تاثیر عدم‌قطعیت‌های سازه‌ای دیوار برشی فولادی بر عملکرد لرزه‌ای قاب خمشی بهسازی‌شده

نوع مقاله : علمی - پژوهشی

نویسندگان

1 دانشجوی دکتری، دانشگاه سمنان، سمنان، ایران

2 دانشیار، دانشگاه سمنان، سمنان، ایران

چکیده

عدم‌قطعیت‌ها که در برآورد مسائل مهندسی سازه اجتناب‌ناپذیر هستند باعث افزایش هزینه‌های بهسازی، نتایج نادرست ارزیابی لرزه‌ای و ایجاد محافظه‌کاری در معیارهای پذیرش سطوح عملکرد سازه می‌شوند. در نظر گرفتن عدم‌قطعیت‌ها و کمی‌سازی آن‌ها در طراحی و بهسازی سازه‌ها باعث کاهش محافظه‌کاری‌های موجود شده و می‌تواند منجر به طراحی و بهسازی اقتصادی سازه‌ها گردد. در بهسازی لرزه‌ای سازه‌ها عدم‌قطعیت‌ها بر روی سازه موجود مطالعه شده و دستورالعمل‌های بهسازی توسط ضرایبی این عدم‌قطعیت‌ها را در نظر گرفته‌اند. افزودن عضو ثانویه برای بهسازی سازه موجود، ممکن است عدم‌قطعیت‌هایی را به‌همراه خود وارد محاسبات کرده و بر روی نتایج قابلیت اعتماد مؤثر باشد. ازاین‌رو در این مقاله، با هدف کمی‌سازی عدم‌قطعیت‌های دیوار برشی فولادی به بحث قابلیت اعتماد سازه بهسازی شده با دیوار برشی فولادی پرداخته‌شده است. سازه مورد مطالعه، سازه نه طبقه قاب خمشی فولادی می‌باشد که توسط دیوار برشی فولادی بهسازی شده است. برای مدل‌سازی و تحلیل سازه از نرم‌افزار اپنسیس استفاده‌شده است. سازه قبل و بعد از بهسازی و با توجه به متغیرهای احتمالاتی در نظر گرفته‌شده برای دیوار برشی فولادی، تحت تحلیل دینامیکی افزایشی قرارگرفته است. نتایج نشان دادند که  تنش تسلیم و سختی الاستیک دیوار برشی فولادی نسبت به سایر متغیرهای احتمالاتی بیشترین تاثیر را بر روی پاسخ سازه دارند. بر اساس نتایج حاصله، در نظر گرفتن عدم‌قطعیت‌ها باعث افزایش احتمال شکست شده و درنتیجه محافظه‌کاری موجود و هزینه‌های بهسازی کاهش‌یافته است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

The Effect of Structural Uncertainties of Steel Shear Wall on Seismic Performance of Rehabilitated Moment Frame

نویسندگان [English]

  • Mahdiye Maddahi 1
  • Mohsen Gerami 2
  • Hossein Naderpour 2
1 PhD Student, department of earthquake engineering, Semnan university, Semnan, Iran
2 Associate professor, department of earthquake engineering, Semnan university, Semnan, Iran
چکیده [English]

Uncertainties are inevitable in the estimation of structural engineering issues and increase the cost of retrofitting. In the presence of uncertainties, the results of seismic evaluation are incorrect and create conservatism in acceptance criteria at structural performance levels. Considering and quantification of uncertainties in design and rehabilitation of structures reduces the existing conservatism and can lead to the economic design and rehabilitation of structures. In the seismic rehabilitation of structures, uncertainties have been studied on existing structures and have been applied by coefficients in guidelines. Adding a secondary system to rehabilitate of existing structure can enter uncertainties into the computation and can be effective for results of reliability. Therefore, in this study, reliability of rehabilitated steel moment frame with steel shear wall has been discussed in order to quantify the uncertainty of the steel shear wall. The selected structure is a nine-storey steel moment frame of SAC project, which was rehabilitated by steel shear wall. The studied structures were analyzed pre- and post-rehabilitation, with probabilistic variables considered for steel shear wall by OpenSees software. Based on results of incremental dynamic analysis and obtained fragility curves, the values of the reliability index have been obtained for the rehabilitated structure in the presence of uncertainties. Results showed that considering of uncertainties and reducing them can reduce the existing conservatism and the cost of rehabilitation.

کلیدواژه‌ها [English]

  • Seismic rehabilitation
  • Steel shear wall
  • Uncertain
  • Sensitivity analysis
  • Incremental dynamic analysis
[1] Hamburger, R. O. (2006). Development of next-generation performance-based earthquake engineering design criteria for buildings (ATC-58 project). In Structures Congress 2006: Structural Engineering and Public Safety, 1-8.
[2] Federal Emergency Management Agency, F. (2006). Next-generation performance-based seismic design guidelines program plan for new and existing buildings (FEMA445). Redwood City.
[3] Siahos, G. and Dritsos, S. (2010). Procedural assumption comparison for old buildings via pushover analysis including the ASCE 41 update. Earthquake Spectra, 26(1), 187-208.
[4] Acun, B. and Sucuoglu, H. (2010). Performance of reinforced concrete columns designed for flexure under severe displacement cycles. ACI Structural Journal, 107(3), 364.
[5] Acun, B. and Sucuoglu, H. (2011). Evaluation of the performance limit states of reinforced concrete columns in view of experimental observations. Teknik Dergi, 22(3), 5523-5541.
[6] Ricci, P., Verderame, G. M. and Manfredi, G. (2012). ASCE/SEI 41 provisions on deformation capacity of older-type reinforced concrete columns with plain bars. Journal of Structural Engineering, 139(12), 04013014.
[7] Ditlevsen, O. and Madsen, H. O. (1996). Structural reliability methods. New York: Wiley, 178.
[8] Hacking, I. (2006). The emergence of probability: A philosophical study of early ideas about probability, induction and statistical inference. Cambridge University Press.
[9] Zareian, F. and Krawinkler, H. (2007). Assessment of probability of collapse and design for collapse safety. Earthquake Engineering and Structural Dynamics, 36(13), 1901-1914.
[10] Helmerich, R., Kühn, B. and Nussbaumer, A. (2007). Assessment of existing steel structures, A guideline for estimation of the remaining fatigue life. Structure and Infrastructure Engineering, 3(3), 245-255.
[11] Shafei, B., Zareian, F. and Lignos, D. G. (2011). A simplified method for collapse capacity assessment of moment-resisting frame and shear wall structural systems. Engineering Structures, 33(4), 1107-1116.
[12] Vamvatsikos, D. (2014). Seismic performance uncertainty estimation via IDA with progressive accelerogram-wise latin hypercube sampling. Journal of Structural Engineering, 140(8), A4014015.
[13] Kaveh, A., Massoudi, M. S. and Bagha, M. G. (2014). Structural reliability analysis using charged system search algorithm. Iranian Journal of Science and Technology. Transactions of Civil Engineering, 38, 439-448.‏
[14] Asgarian, B. and Ordoubadi, B. (2016). Effects of structural uncertainties on seismic performance of steel moment resisting frames. Constructional Steel Research, 120, 132-142.
[15] Zhang, H., Shayan, S., Rasmussen, K. J. and Ellingwood, B. R. (2016). System-based design of planar steel frames, I: Reliability framework. Journal of Constructional Steel Research, 123, 135-143.
[16] Holicky, M., Retief, J. V. and Sykora, M. (2016). Assessment of model uncertainties for structural resistance. Probabilistic Engineering Mechanics, 45, 188-197.
[17] Norouzi, A. H. and Gerami, M. (2019). Quantifying response variability of steel moment frames due to seismic uncertainties. Asian Journal of Civil Engineering, 20(4), 503-514.‏
[18] Piluso, V., Pisapia, A., Castaldo, P. and Nastri, E. (2019). Probabilistic theory of plastic mechanism control for steel moment resisting frames. Structural Safety, 76, 95-107.
[19] Federal Emergency Management Agency, F. (2009). Quantification of building seismic performance factors (FEMA P695). US Department of Homeland Security, Washington.
[20] Gupta, A. and Krawinkler, H. (1998). Seismic demands for the performance evaluation of steel moment resisting frame structures. Doctoral dissertation, Stanford University.
[21] McKenna, F. (2003). OpenSees: Open system for earthquake engineering simulation, Berkeley University of California. www.opensees.berkeley.edu
[22] Thorburn, L. J., Montgomery, C. J. and Kulak, G. L. (1983). Analysis of steel plate shear walls. Structural Engineering Report No. 107, Department of Civil Engineering, University of Alberta, Edmonton, Canada.
[23] Timler, P. A. and Kulak, G. L. (1983). Experimental study of steel plate shear walls. Structural Engineering Report No. 114, Department of Civil Engineering, University of Alberta, Edmonton, Canada.
[24] Canadian Standards Association (CSA). (2009). Design of steel structures (CAN/CSA S16-09). Willowdale, Ontario, Canada.
[25] American Institute of Steel Construction (AISC). (2010b). Seismic provisions for structural steel buildings (ANSI/AISC 341-10). Chicago, Illinois.
[26] Purba, R. and Bruneau, M. (2014). Seismic performance of steel plate shear walls considering various design approaches. Technical Report MCEER-14-0005.
[27] Davoodi, M. and Sadjadi, M. (2015). Assessment of near-field and far-field strong ground motion effects on soil-structure SDOF system. International Journal of Civil Engineering, 13(3), 153-166.
[28] Whittaker, A., Atkinson, G., Baker, J., Bray, J., Grant, D., Hamburger, R. and Somerville, P. (2011). Selecting and scaling earthquake ground motions for performing response-history analyses (Grant/Contract Reports (NISTGCR)-11-917-15). US Department of Commerce.
[29] Thoft-Christensen, P. and Baker, M. J. (1982). Reliability of structural systems. In Structural Reliability Theory and Its Applications. Springer, Berlin, Heidelberg, 113-127.
[30] Rajeev, P. and Tesfamariam, S. (2012). Seismic fragilities of non-ductile reinforced concrete frames with consideration of soil structure interaction. Soil Dynamics and Earthquake Engineering, 40, 78-86.
[31] Melchers, R. E. (1999). Structural reliability analysis and prediction. Wiley, New York.
[32] JCSS, J. (2001). Probabilistic model code. Joint Committee on Structural Safety.
[33] Schmidt, B. J. and Bartlett, F. M. (2003a). Review of resistance factor for steel: data collection. Canadian Journal of Civil Engineering, 29(1), 98-108.
[34] Dexter, R. J., Graeser, M., Saari, W. K., Pascoe, C., Gardner, C. A., and Galambos, T. V. (2000). Structural shape material property survey. Final Report to Structural Shape Producer's Council, University of Minnesota, Minneapolis, USA.
[35] Sadowski, A. J. and Rotter, J. M. (2013). Solid or shell finite elements to model thick cylindrical tubes and shells under global bending. Mechanical Sciences, 74, 143-153.
[36] Sadowski, A. J., Rotter, J. M., Reinke, T. and Ummenhofer, T. (2015) Statistical analysis of the material properties of selected structural carbon steels. Structural Safety, 26-35.
[37] Lignos, D. G. and Krawinkler, H. (2011). Deterioration modeling of steel components in support of collapse prediction of steel moment frames under earthquake loading. Structure Engineering (ASCE), 137, 1291-302.
[38] Federal Emergency Management Agency, F. (2000). Prestandard and commentary for the seismic rehabilitation of buildings (FEMA356). US Department of Homeland Security, Washington.
[39] Ellingwood, B. R. and Kinali, K. (2009). Quantifying and communicating uncertainty in seismic risk assessment. Structural Safety, 31(2), 179-187.
[40] Kinali, K. and Ellingwood, B. R. (2007). Seismic fragility assessment of steel frames for consequence-based engineering: A case study for Memphis, TN. Engineering structures, 29(6), 1115-1127.
[41] Hossain, M. R., Ashraf, M. and Padgett, J. E. (2013). Risk-based seismic performance assessment of Yielding Shear Panel Device. Engineering Structures, 56, 1570-1579.