عیب‌یابی دیوارهای پیش‌ساخته (صفحات 3D پانل) مبتنی بر الگوریتم شناسایی تبدیل موجک

نوع مقاله : علمی - پژوهشی

نویسندگان

1 دانشکده مهندسی عمران- دانشگاه سمنان- سمنان-ایران.

2 دانشیار، دانشکده مهندسی عمران، دانشگاه سمنان، سمنان، ایران

چکیده

بسیاری از سازه‌ها در طول بهره‌برداری از آن‌ها دچار خسارت‌هایی جزئی در برخی از المان‌ها می‌باشند و در نتیجه گسترش این نوع خسارت‌ها، عمر مفید سازه‌ها کاهش و در برخی موارد دچار تخریب کلی می‌گردند. به همین دلیل امروزه اطمینان از وضعیت سلامت سازه‌ها و عملکرد آن‌ها به عنوان یکی از مهم‌ترین مسائل مهندسی مطرح می‌باشد. با توجه به محدودیت‌های روش‌های سنتی عیب‌یابی، روش‌های بر پایه تغییرات در مشخصه‌های ارتعاشی سازه شکل گرفته‌اند. در این مقاله با در نظر گرفتن شکل مودهای دیوار پیش‌ساخته پانلی در قبل و بعد از خرابی به عنوان یک سیگنال پردازشی دو بعدی، با استفاده از تبدیل موجک گسسته دو بعدی به شناسایی ناحیه خرابی پرداخته شده است. در ابتدا دیوار پیش‌ساخته پانلی در نرم ‌افزار المان محدود ABAQUS مدل‌سازی و جهت استخراج پاسخ‌های مودال، مورد تحلیل فرکانسی واقع شد و با پاسخ‌های مودال نمونه آزمایشگاهی نظیر صحت‌سنجی گردید. تغییرات در مقادیر فرکانس‌های طبیعی و همچنین، عدم سازگاری شکل مودها بر اساس معیار اطمینان مودال (MAC) و زاویه بین شکل مودها، وجود خرابی در سازه را تائید می‌نماید. نیز، جزئیات قطری حاصل از تحلیل تبدیل موجک تفاضل یا مجموع شکل مودهای سالم و معیوب درون‌یابی شده (بسته به زاویه بین شکل مودها، اگر تقریباً صفر درجه باشد، تفاضل و اگر تقریباً 180 درجه باشد، مجموع شکل مودها تحلیل می‌گردد) نشان ‌دهنده نامنظمی بیشتری از ضرایب موجک در نواحی خرابی نسبت به سایر نواحی می‌باشد؛ به ‌طوری‌ که ماکزیمم‌ها و مینیمم‌های نسبی پرش در ضرایب موجک، در محل وقوع خرابی‌ها اتفاق افتاده است.

کلیدواژه‌ها


عنوان مقاله [English]

Damage Detection Of Prefabricated Walls (Panel 3D Plates) Based On Wavelet Transform Detection Algorithm

نویسندگان [English]

  • Mohtasham Khanahmadi 1
  • Omid Rezayfar 2
  • majid Gholhaki 2
1 Department of civil engineering, semnan university,semnan, Iran
2 Associate Proffessor, Faculty of Civil Engineering, Semnan University, Semnan, Iran
چکیده [English]

A large number of structures experience minor damage in some elements during operation, therefore, the development of this type of damage reduces the service life of the structures and in some cases leads to total destruction. That's why, today, being assured of the health status of structures and their performance is proposed as one of the most important engineering issues. Considering the limitations of traditional damage detection methods, the methods based on changes in the vibrational characteristics of the structure have been formed. In this paper, given the modes shape of the panel prefabricated wall before and after destruction as a 2-D signal processing, the damaged zone was detected using discrete 2-D wavelet transform. At first, the panel prefabricated wall was modeled in the ABAQUS finite element software, and the frequency analysis was done to extract modal responses and was validated using modal responses of the corresponding laboratory sample. Changes in the values of natural frequencies, as well as the incompatibility of the modes shape based on the Modal Assurance Criterion (MAC) and the angle between the modes shape confirm the damage in the structure. Additionally, diagonal details from differential or summation wavelet transform analysis of the interpolated healthy and damaged modes shape (depending on the angle between the modes shape, if it approximately equals zero degree, the differential of modes shape is analyzed, and if it approximately equals 180 degree, the summation of modes shape is analyzed) indicate more irregularity of the wavelet coefficients in the damaged zone compared to other zones such that the jump relative maxima and minima in the wavelet coefficients have occurred in the damage occurrence zone.

کلیدواژه‌ها [English]

  • "Structural Health Monitoring"
  • "Prefabricated Wall"
  • "Mode Shape"
  • "Modal Assurance Criterion"
  • "Wavelet Transform"
  • "Damage Detection"
[1] Rytter, A., (1993). “Vibration based inspection of civil engineering structures”, Ph.D Thesis, Aalborg University, Denmark.
[2] Friswell, M., and Penny, J., (1992). “A simple nonlinear modal of a cracked beam”, Proceeding of the 10th International Modal Analysis Conference, San Diego, Californie, 1, pp. 516–521.
[3] Dimarogonas, A., (1996). “Vibration of cracked structures: A state of the art review”, Engineering Fracture Mechanics, 55, pp. 831–857.
[4] Salawu, O., (1997), “Detection of structural damage through changes in frequency: A Review”, Engineering Structures, 19(9), pp. 718–723.
[5] Sohn, H., Farrar, C., Hemez, F., Shunk, D., Stinemates, D., and Nadler, B., (2003). “A review of structural health monitoring literature: 1996-2001”, Los Alamos National Laboratory, USA.
[6] Sabnavis, G., Kirk, R., and Kasarda, M., (2004). “Cracked shaft detection and diagnostics: A literature review”, Shock and Vibration Digest, 36, pp. 287-296.
[7] Havaei, G. R., (2016). “Sensitivity based analyses by artificial earthquake by  measuring structural accelerations for damage assessment”, Journal of Structural and Construction Engineering, 2(4), pp. 104-116.
[8] Newland, D., (1993). “An introduction to random vibrations, spectral and wavelet analysis”, 3rd ed. Harlow: Longman Scientific and Technical.
[9] Newland, D., (1994). “Wavelet analysis of vibration. Part 1: Theory”, Journal of Vibration and Acoustic, 116, pp. 409-416.
[10] Newland, D., (1994). “Wavelet analysis of vibration. Part 2: Wavelet maps”, Journal of Vibration and Acoustic, 116, pp. 417-424.
[11] Surace, C., and Ruotolo, R., (1994). “Crack detection of a beam using the wavelet transform”, Proceedings the 12th International Modal Analysis Conference, Honolulu, Hawaii, 1, pp. 1141-1147.
[12] Liew, K., and Wang, Q., (1998). “Application of wavelet theory for crack identification in structures”, Journal of Engineering Mechanics ASCE, 124(2), pp. 152-157.
[13] Wang, Q., Wang, D., and Su, X., (1999). “Crack detection of structure for plane problem with spatial wavelets”, Acta Mech Sin, 15(1), pp. 39-51.
[14] Zhu, X., and Law, S., (2006). “Wavelet-based crack identification of bridge beam from operational deflection time history”, International Journal of Solids and Structures, 43, pp. 2299-2317.
[15] Ruckha, M., and Wilde, K., (2006). “Application of continuous wavelet transform in vibration based damage detection method for beams and plates”. Journal of Sound and Vibration, 297, pp. 536-550.
[16] Katunin, A., (2010). “Identification of multiple cracks in composite beams using discrete wavelet transform”. Scientific Problem of Machines Operation and Maintenance, 2(162).
[17] Solís, M., Algaba, M., and Galvín, P., (2013). “Continuous wavelet analysis of mode shapes differences for damage detection”, Mechanical Systems and Signal Processing, 40, pp. 645-666.
[18] Katunin, A., (2015). “Stone impact damage identification in composite plates using modal data and quincunx wavelet analysis”, Archives of Civil and Mechanical Engineering, 15, pp. 251-261.
[19] Patel, S., Chourasia, A., Panigrahi, S., Parashar, J., Parvez, N., and Kumar, M., (2016). “Damage identification of RC structures using wavelet transformation”, Procedia Engineering, 144, pp. 336-342.
[20] Yang, C., Oyadiji, S. O., (2017). “Delamination detection in composite laminate plates using 2D wavelet analysis of modal frequency surface”, Journal of Computers and Structures, 179, pp. 109-126.
[21] Khanahmadi, M., Rezayfar, O., Gholhaki, M., (2019), “Damage detection in steel beams using analytical results comparison of the continuous wavelet transform of modes shape”, 3rd International Conference on Applied Research in Structural Engineering and Construction Management, Sharif University of Technology.
[22] Khanahmadi, M., Rezayfar, O., Gholhaki, M., (2019), “Damage detection in steel plates based on comparing analytical results of the discrete 2-D wavelet transform of primary and secondary modes shape”, Journal of Structural and Construction Engineering, DOI: 10.22065/JSCE.2019.174347.1799.
[23] Benedetto, J.J., Frazier, M.W., (1994). “WAVELETS: Mathematics and Applications”, CRC Press, Boca Raton.
[24] Rao, K.R., Kim, D.E., Hwang, J.J., (2005). “Fast Fourier Transform: Algorithm and Applications”, Springer, Berlin Heidelberg.
[25] Mertins, A., (1992). “Signal Analysis: Wavelets, Filter Banks, Time-Frequency Transforms and Applications” Publisher: Wiley; Revised Edition (February 24, 1999).
[26] MATLAB Reference Guide, the Math Works, Ince., 2010b.
[27] Bagheri, A., Kourehli, S., (2013). “Damage detection of structures under earthquake excitation using discrete wavelet analysis”, Asian Journal of civil engineering (BHRC), 14(2), pp. 289-304.
[28] Abdulkareem, M., Bakhary, N., Vafaei, M., Noor, N., Padi, K., (2018). “Non-probabistic wavelet method to consider uncertainties in structural damage detection”, Journal of Sound and Vibration, 433, pp. 77-98.
[29] Hosini Vaez, S.R, Dehghani, E., Babaei, V., (2017). “Damage detection in post-tensioned slab using 2D wavelet transforms”, Journal of Rehabilitation in Civil Engineering, 5(2), pp. 25-38.
[30] Sarkhosh, S., (2011). “ Damage detection assesment of elements in 3D-panel system”, MS.C Thesis, Semnan University, Semnan, Iran.
[31] Pastor, M., Binda, M., Harcarik, T., (2012). “Modal Assurance Criterion”, Journal of Procedia Engineering, 48, pp. 543-548.