ارزیابی و تخمین ضخامت لایه‌های خاک با استفاده از تحلیل چند ایستگاهی امواج سطحی و منحنی پراکندگی امواج سطحی

نوع مقاله : علمی - پژوهشی

نویسندگان

1 دانشجوی دکتری ژئوتکنیک، گروه عمران و محیط‌زیست، دانشگاه صنعتی شیراز، شیراز، ایران

2 استادیار گروه عمران و محیط‌زیست، دانشگاه صنعتی شیراز، شیراز، ایران

3 دانشیار گروه عمران و محیط‌زیست، دانشگاه صنعتی شیراز، شیراز، ایران

چکیده

یکی از موضوعات موردعلاقه مهندسان ژئوتکنیک و ژئوفیزیک، استفاده از روش امواج سطحی در شناسایی لایه‌های زیرسطحی زمین می‌باشد. در محیطی که به‌صورت عمودی ناهمگن می‌باشد، سرعت فازی امواج سطحی تابعی از فرکانس می‌باشد. نمودار فرکانس در برابر سرعت فازی، منحنی پراکندگی نامیده می‌شود که این منحنی تابعی از سرعت موج‌برشی، سرعت موج فشاری، چگالی و ضخامت هرکدام از لایه‌های زمین می‌باشد. در این مقاله، مدل‌سازی محیط خاک با لایه‌بندی افقی در نرم‌افزار اجزا محدود (آباکوس) ارائه گردیده و پاسخ لرزه‌ای محیط‌های خاک با لایه‌های افقی شبیه‌سازی شده است. با توجه به تفاوت در مشخصات لایه‌بندی محیط، مدل‌ها را به دو نوع اصلی تقسیم می‌نماییم: مشخصات لایه‌ها با عمق افزایش می‌یابد (لایه‌ها از بالا به پایین سخت‌تر می‌شوند) و مشخصات لایه‌ها با عمق کاهش و افزایش می‌یابد (لایه‌ای ضعیف در بین دو لایه قوی‌تر قرار گرفته باشد). در این مدل‌ها، برای ایجاد امواج سطحی از منبع ضربه فعال استفاده گردید و برای مرزهای مدل نیز، از روش لایه‌های جاذب با میرایی افزایشی استفاده شد (بدین ترتیب، از ورود امواج برگشتی از مرزها به داخل مدل جلوگیری شد). پس از اتمام مدل‌سازی، داده‌های لرزه‌ای توسط ژئوفون‌ها ثبت گردید و منحنی پراکندگی داده‌های برداشت شده با استفاده از روش انتقال فرکانس-عددموج محاسبه گردید. سپس، تاثیر فواصل مختلف ژئوفون‌ها در منحنی پراکندگی موردبررسی قرار گرفت. نتایج به‌دست‌آمده نشان دادند که با استفاده از منحنی پراکندگی و سرعت فازی در فرکانس‌های بالا می‌توان ضخامت لایه سطحی را محاسبه نمود. همچنین، سرعت فازی در فرکانس‌های بالا متناسب با سرعت فازی لایه سطحی می‌باشد. در صورت وجود لایه سست‌تر در بین لایه‌های سخت‌تر، منحنی پراکندگی دارای یک تقعر می‌باشد که باعث می‌شود در فرکانس‌های کم، منحنی پراکندگی به سمت سرعت لایه سست‌تر میل کند و سپس در فرکانس‌های بالاتر، به سرعت فازی لایه سطحی مجانب شود. شیب منحنی پراکندگی در فرکانس‌های پایین نشان‌دهنده حضور لایه‌های با سرعت‌های مختلف می‌باشد و هرچه شیب تندتر و به قائم نزدیک‌تر باشد، تعداد لایه‌های کمتری در محیط وجود دارد. برای محیط‌هایی که سختی‌شان از لایه‌های سطحی به لایه‌های پایین‌تر افزایش می‌یابد، منحنی پراکندگی به سمت راست (فرکانس‌های بالاتر) انتقال پیدا می‌کند. در ادامه تاثیر فواصل مختلف ژئوفون‌ها بررسی گردید و ملاحظه شد که فاصله ژئوفن‌ها باید به مقدار کمتر از یک‌چهارم عمق لایه محدود شود تا از پرش منحنی پراکندگی به مدهای بالاتر جلوگیری گردد. بعلاوه، در صورت مشاهده پرش منحنی پراکندگی به مدهای بالاتر در فرکانس‌های بالا، می‌توان، داده‌های لرزه‌ای را با فاصله کمتر ژئوفون‌ها برداشت نمود و یا اینکه، منحنی پراکندگی را فقط در محدوده فرکانسی قبل از پرش به مد بالاتر موردبررسی قرار داد.

کلیدواژه‌ها


عنوان مقاله [English]

Estimation of the Soil Layers Thickness Using Multi-Chanel Analysis of Surface Waves and Surface Wave Dispersion Curve

نویسندگان [English]

  • Mehdi Hashemi Jokar 1
  • Hossein Rahnema 2
  • Abdolhossein Baghlani 3
1 Ph.D. Candidate, Department of Civil and Environmental Engineering, Shiraz University of Technology, Shiraz, Iran
2 Assistant Professor, Department of Civil and Environmental Engineering, Shiraz University of Technology, Shiraz, Iran
3 Associate Professor, Department of Civil and Environmental Engineering, Shiraz University of Technology, Shiraz, Iran
چکیده [English]

One of the most interesting topics in the geotechnical and geophysical engineering is the use of surface waves to characterize the earth subsurface layers. In a vertically heterogeneous media, the phase velocity of the surface wave is a function of the frequency (the frequency-phase velocity relationship is called dispersion curve). The dispersion curve is calculated by the shear wave velocity, compressive velocity, density, and thickness of each of the layers, which their properties can be increasing or decreasing from the surface to the half-space. In this paper, horizontal soil layers were modelled using finite element method based software (ABAQUS). Due to the different layering specifications, the models are divided into two main types: the layers’ characteristics increase with depth and the layers' characteristics decrease and increase with depth. An active impact source was used to create surface waves and the absorption layers with increasing damping (ALID) were applied to the model boundaries to prevent the wave reflection. Based on the gathered surface wave data, the dispersion curve was plotted using Frequency-Wavenumber Transfer method. In addition, the effects of different geophone offsets on the dispersion curve were investigated. The results showed that using the dispersion curve and phase velocity at high frequencies, the thickness of the surface layer can be calculated. Also, the slope of the dispersion curve at low frequencies indicates the number of the layers at different properties, and the steeper and closer to the vertical, means that a few number of layers are exist in the media. Furthermore, the effects of different geophone offsets were investigated and it was observed that geophone offsets should be limited to less than one-fourth of the layer depth in order to prevent the dispersion curve jumping to the higher modes. Furthermore, if the dispersion curve jumps to the higher modes at high frequencies, seismic data can be taken at a less geophones’ offset or the dispersion curve frequency range limitation is only before jumping to higher modes.

کلیدواژه‌ها [English]

  • Surface waves
  • dispersion curves
  • Finite element method
  • Layer thickness
  • Geophone offsets
  • Higher Modes
[1] Aki, K. and P.G. Richards, Quantitative seismology. 2002.
[2] Anderson, J.G., Strong-motion seismology. INTERNATIONAL GEOPHYSICS SERIES, 2003. 81(B): p. 937-966.
[3] Pei, D., Modeling and inversion of dispersion curves of surface waves in shallow site investigations. Vol. 68. 2007.
[4] Hashemi Jokar, M., J. Boaga, L. Petronio, M.T. Perri, C. Strobbia, A. Affatato, R. Romeo, and G. Cassiani, Detection of lateral discontinuities via surface waves analysis: a case study at a derelict industrial site. Journal of Applied Geophysics, 2019: p. 65-74.
[5] Scales, J.A. and A.E. Malcolm, Laser characterization of ultrasonic wave propagation in random media. Physical Review E, 2003. 67(4): p. 046618.
[6] Strobbia, C., J. Boaga, G. Cassiani, M. Hashemi Jokar, and P. Primiero, Integrated seismic characterization for deep engineering targets: active and passive surface waves, reflection and refraction near-surface modelling from a single acquisition. International Conference on Engineering Geophysics, Al Ain, United Arab Emirates, 2017.
[7] Schwenk, J.T., S.D. Sloan, J. Ivanov, and R.D. Miller, Surface-wave methods for anomaly detection. Geophysics, 2016. 81(4): p. EN29-EN42.
[8] Foti, S., C.G. Lai, G.J. Rix, and C. Strobbia, Surface wave methods for near-surface site characterization. 2015: CRC Press.
[9] Neducza, B., Stacking of surface waves. Geophysics, 2007. 72(2): p. V51-V58.
[10] Hashemi Jokar, M., H. Rahnema, J. Boaga, G. Cassiani, and C. Strobbia, Application of Surface Waves for Detecting Lateral Variations: Buried Inclined Plane. Near Surface Geophysics, 2019: p. 1-45.
[11] Lowe, M., R. Challis, and C. Chan, The transmission of Lamb waves across adhesively bonded lap joints. The Journal of the Acoustical Society of America, 2000. 107(3): p. 1333-1345.
[12] Hesse, D. and P. Cawley, Surface wave modes in rails. The Journal of the Acoustical Society of America, 2006. 120(2): p. 733-740.
[13] Castaings, M., C. Bacon, B. Hosten, and M. Predoi, Finite element predictions for the dynamic response of thermo-viscoelastic material structures. The Journal of the Acoustical Society of America, 2004. 115(3): p. 1125-1133.
[14] Luo, W. and J.L. Rose, Phased array focusing with guided waves in a viscoelastic coated hollow cylinder. The Journal of the Acoustical Society of America, 2007. 121(4): p. 1945-1955.
[15] Drozdz, M.B., Efficient finite element modelling of ultrasound waves in elastic media. 2008, Imperial College London.
[16] Lin, S., Advancements in active surface wave methods: modeling, testing, and inversion. 2014.
[17] ABAQUS v6.14, S., Abaqus Analysis User’s Guide. Dassault Systèmes Simulia Corp., Proidence, RI, USA,  www.simulia.com, 2014.
[18] Motamed, R., K. Itoh, S. Hirose, A. Takahashi, and O. Kusakabe. Evaluation of wave barriers on ground vibration reduction through numerical modeling in ABAQUS. in Proceedings of the SIMULIA Customer Conference 2009. 2009.
[19] Atkinson, J., Non-linear soil stiffness in routine design. Géotechnique, 2000. 50(5): p. 487-508.