بهینه سازی مکانیکی و اقتصادی بتن‌‌ها‌ی پر مقاومت حاوی زئولیت و نانوسیلیس

نوع مقاله : علمی - پژوهشی

نویسندگان

1 دانشجوی دکتری مهندسی و مدیریت ساخت، دانشگاه سمنان، سمنان، ایران

2 استادیار، دانشکده مهندسی عمران، دانشگاه سمنان، سمنان، ایران

3 دانشیار، دانشکده مهندسی عمران، دانشگاه سمنان، سمنان، ایران

چکیده

در بین بخش‌های مختلف صنعت عمران، بتن یکی از پرمصرف ترین مصالح صنعت به شمار می‌روند. استفاده از مواد پوزولانی یکی از راهکارهای ساخت بتن با مقاومت بالا می‌باشد. بتن پرمقاومت دارای مقاومت فشاری، چسبندگی بالا و نسبت آب به سیمان و نفوذپذیری بسیار کم و در نتیجه دوام بسیار زیاد می باشد. در این مطالعه از زئولیت و نانوسیلیس به‌عنوان پوزولان های طبیعی و مصنوعی بهره گرفته‌شده است. در ابتدا نمونه های بتنی با 20 طرح اختلاط مدنظر برای دستیابی به طرح بهینه ساخته‌شده و سپس آزمایش های مقاومت فشاری و نفوذپذیری بتن با مقاومت بالا صورت پذیرفته است. در مرحله نهایی مقادیر طرح اختلاط بتن های ساخته‌شده با نتایج مقاومت فشاری به‌عنوان ورودی‎های شبکه عصبی مورد استفاده گرفته است. سپس رابطه ارائه‌شده با بهره گیری از الگوریتم بهینه ساز از منظر اقتصادی (مقدار بهینه اجزای تشکیل‌دهنده) بهینه سازی شده است. افزودن زئولیت و نانوسیلیس به بتن موجب افزایش مقاومت و کاهش نفوذپذیری نمونه‌ها به‌ویژه در بلندمدت نسبت به نمونه های مرجع شده است. با توجه به نتایج ارائه‌شده مشاهده می‎گردد که مقادیر سیمان و نانوسیلیس به دلیل هزینه بالای تهیه کاهش یافته اما بر مقادیر زئولیت افزوده شده است.

کلیدواژه‌ها


عنوان مقاله [English]

Mechanical and Economical Optimization of High-Strength Concrete Containing Zeolite and Nanosilica

نویسندگان [English]

  • Amin Lotfi Eghlim 1
  • Mohammad Saeed Karimi 2
  • Mohammad Kazem Sharbatdar 3
1 PhD Student in engineering and construction management, Semnan University, Semnan, Iran
2 Assistant Professor, Faculty of Civil Engineering, Semnan University, Semnan, Iran
3 Associate Professor, Faculty of Civil Engineering, Semnan University, Semnan, Iran
چکیده [English]

Between various sectors of civil engineering, concrete is one of the most widely used materials in the building industry. The use of pozzolanic materials is one of the solutions for high strength concrete production. High-strength concretes have high compressive strength, high adhesion, very low w/c ratio and permeability and therefore high durability. In this study, zeolite and nanosilica were used as natural and synthetic pozzolans. At first, concrete samples with 20 mixing designs (included water, cement, fine and coarse aggregates, zeolite, nanosilica and super-plasticizer) were designed to achieve the optimal design, and then tests of compressive strength and permeability of high-strength concrete were carried out. In the final step, the values of the mixing plan with the compressive strength results are used as inputs of the neural network. Then, the proposed relationship is optimized using the optimization algorithm from an economic perspective (optimal component value). The addition of zeolite and nanosilica to concrete not only increases resistance, but also decreases the permeability of samples, especially in the long term respect to pilot samples. According to the optimization results, it is observed that cement and nanosilica content has been reduced due to the high cost of production, but increased on zeolite values.

کلیدواژه‌ها [English]

  • High-strength concrete
  • Artificial Neural Network
  • Genetic Algorithm
  • Zeolite
  • nanosilica
[1] Rasoli, M., abbasi, B. (1396). Investigation of the Effect of Silica Soot on the Properties of Concrete Generated, Second International Conference on Civil Engineering, Architecture and Urban Design.
[2] Davraz, M., Ceylan, H., Topçu, İ. B., & Uygunoğlu, T. (2018). Pozzolanic effect of andesite waste powder on mechanical properties of high strength concrete. Construction and Building Materials, 165, 494-503.
[3] Sadr momtazi, A., tahmoresi, B. (1396). Investigating the boundary of aggregate-cement paste in concrete containing silica and fly ash. Structural and construction engineering publication.
[4] Yazdandoust and yazdani. (2014). Investigating the interaction the weight ratio of micro silica, the softness modulus of aggregate and the ratio of water to cement on the physical and mechanical parameters of concrete. Modares civil engineering, 14(20), 183-195.
[5] Perry, C., & Gillott, J. E. (1995). The influence of silica fume on the strength of the cement-aggregate bond. Special Publication, 156, 191-212.
[6] Soriano, L., Monzó, J., Bonilla, M., Tashima, M. M., Payá, J., & Borrachero, M. V. (2013). Effect of pozzolans on the hydration process of Portland cement cured at low temperatures. Cement and Concrete Composites, 42, 41-48.
[7] Moon, J., Bae, S., Celik, K., Yoon, S., Kim, K. H., Kim, K. S., & Monteiro, P. J. (2014). Characterization of natural pozzolan-based geopolymeric binders. Cement and Concrete Composites, 53, 97-104.
[8] Grist, E. (2014). The implementation of innovative and sustainable construction materials.
[9] Robayo-Salazar, R. A., de Gutiérrez, R. M., & Puertas, F. (2016). Effect of metakaolin on natural volcanic pozzolan-based geopolymer cement. Applied Clay Science, 132, 491-497.
[10] Hossain, M. M., Karim, M. R., Hasan, M., Hossain, M. K., & Zain, M. F. M. (2016). Durability of mortar and concrete made up of pozzolans as a partial replacement of cement: A review. Construction and Building Materials, 116, 128-140.
[11] Ghrici, M., Kenai, S., & Said-Mansour, M. (2007). Mechanical properties and durability of mortar and concrete containing natural pozzolana and limestone blended cements. Cement and Concrete Composites, 29(7), 542-549.
[12] Baldino, N., Gabriele, D., Lupi, F. R., Seta, L., & Zinno, R. (2014). Rheological behaviour of fresh cement pastes: Influence of synthetic zeolites, limestone and silica fume. Cement and Concrete Research, 63, 38-45.
[13] Detwiler, R. J., Bhatty, J. I., & Battacharja, S. (1996). Supplementary cementing materials for use in blended cements (No. R&D Bulletin RD112T,).
[14] Kjellsen, K. O., Wallevik, O. H., & Hallgren, M. (1999). On the compressive strength development of high-performance concrete and paste—effect of silica fume. Materials and Structures, 32(1), 63.
[15] Zheng, D. D., Ji, T., Wang, C. Q., Sun, C. J., Lin, X. J., & Hossain, K. M. A. (2016). Effect of the combination of fly ash and silica fume on water resistance of Magnesium–Potassium Phosphate Cement. Construction and Building Materials, 106, 415-421.
[16] Cabrera, J. G., & Claisse, P. A. (1990). Measurement of chloride penetration into silica fume concrete. Cement and Concrete Composites, 12(3), 157-161.
[17] Turk, K., Turgut, P., Karatas, M., & Benli, A. (2010, September). Mechanical Properties of Selfcompacting Concrete with Silica Fume/Fly Ash. In 9th International Congress on Advances in Civil Engineering (pp. 27-30).
[18] Perraki, T., Kontori, E. , Tsivilis, S. , & Kakali, G. (2010). The effect of zeolite on the properties and hydration of blended cements. Cement and Concrete Composites, 32(2), 128-133.
[19] Esmailnia, M., faridi, M. (1392). The effect of zeolite replacement on the efficiency of self-compacting concrete containing recycled aggregate, the fifth annual national conference of concrete in Iran.
[20] Yeh IC. Modeling of strength of HPC using ANN. Cement Concrete Res 1998; 28(12):1797–808.
[21] Jung HC, Jamshid G. Genetic algorithm in structural damage detection. Computers Struct 2001; 30(6):1335.
[22] Selvamony, C., Ravikumar, M. S., Kannan, S. U., & Gnanappa, S. B. (2010). Investigations on self-compacted self-curing concrete using limestone powder and clinkers. ARPN J. Eng. Appl. Sci, 5(3), 1-6.
[23] Turk, K., Turgut, P., Karatas, M., & Benli, A. (2010, September). Mechanical Properties of Selfcompacting Concrete with Silica Fume/Fly Ash. In 9th International Congress on Advances in Civil Engineering (pp. 27-30).
[24] Atan, M. N., & Awang, H. (2011). The compressive and flexural strengths of self-compacting concrete using raw rice husk ash. J. Eng. Sci. Technol, 6(6), 720-732.
[25] Mahmodi, K., Ketabdari, M. J. (1396). Slump and Compressive Strength Modeling of high-strength Concrete Using Artificial Neural Networks and Multiple Linear Regressions. Civil engineering. 2.33 (2.3), 105-115. (In Persian)
[26] Lee, S. C. (2003). Prediction of concrete strength using artificial neural networks. Engineering Structures, 25(7), 849-857.
[27] Sarıdemir, M. (2014). Effect of specimen size and shape on compressive strength of concrete containing fly ash: Application of genetic programming for design. Materials & Design (1980-2015), 56, 297-304.
[28] Henry G. Russell. Chairman. Arthur R. Anderson. Jack O. Banning. Irwin G.State-of-the-Art Report on High-Strength Concrete. Reported by ACI Committee 363.
[29] Aitcin, P. C. (1994). Durable Concrete-Current Practice and Future Trends. Special Publication, 144, 85-104.
[30] ASTM C618-19, Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete, ASTM International, West Conshohocken, PA, 2019, www.astm.org
[31] Self-Compacting Concrete European Project Group. (2005). The European guidelines for self-compacting concrete: Specification, production and use. International Bureau for Precast Concrete (BIBM).
[32] ASTM C1240-15, Standard Specification for Silica Fume Used in Cementitious Mixtures, ASTM International, West Conshohocken, PA, 2015, www.astm.org
[33] Design and implementation of reinforced concrete buildings, 9th edition, 1392, Publications Office of National Building Regulations. Part 9-10-4-2, p 123. (in persian)
[34] Hover, K. (1995). Graphical Approach to Mixture Proportioning by ACI 211.1-91. Concrete International, 17(9), 49-53.
[35] Esmaeili-Falak, M., Katebi, H., Vadiati, M., & Adamowski, J. (2019). Predicting Triaxial Compressive Strength and Young’s Modulus of Frozen Sand Using Artificial Intelligence Methods. Journal of Cold Regions Engineering, 33(3), 04019007.
[36] Nassr, A., Esmaeili-Falak, M., Katebi, H., & Javadi, A. (2018). A new approach to modeling the behavior of frozen soils. Engineering geology, 246, 82-90.
[37] Koza, J. R., & Koza, J. R. (1992). Genetic programming: on the programming of computers by means of natural selection(Vol. 1). MIT press.
[38] Naghadehi, M. Z., Samaei, M., Ranjbarnia, M., & Nourani, V. (2018). State-of-the-art predictive modeling of TBM performance in changing geological conditions through gene expression programming. Measurement, 126, 46-57.
[39] Habibi A. (2019). Optimization of heavy concrete mix design based on experimental results. IQBQ, 18 (6): 63-72