ارزیابی پاسخ لرزه ای سازه های نامنظم در پلان با استفاده از ترکیب جداگرهای لاستیکی هسته سربی و اصطکاکی پاندولی

نوع مقاله : علمی - پژوهشی

نویسندگان

1 استادیار، دانشکده مهندسی عمران، آب و محیط زیست، دانشگاه شهید بهشتی، تهران، ایران

2 دانشجوی دکتری، دانشکده مهندسی عمران، آب و محیط زیست، دانشگاه شهید بهشتی، تهران، ایران

چکیده

بدلیل افزایش استفاده از جداگرهای لرزه ای بعنوان یک سیستم مقاوم در برابر زلزله درسالیان اخیر و اهمیت بالای آن، در این مقاله به بررسی ترکیب بهینه استفاده از جداگرهای لاستیکی هسته سربی و اصطکاکی پاندولی در سازه های نامنظم پرداخته شده و عملکرد آن با نمونه منظم مورد مقایسه قرار گرفته است. بدین منظور 3 پلان نامنظم انتخاب شده و هرکدام با 3 تیپ تعداد طبقات 3، 7 و 10 مورد بررسی قرار گرفته و 12جایگشت امکان پذیر مختلف جداگرها در هر پلان بکار گیری شده است. سپس با بکارگیری 7 رکورد زلزله در جهت طولی و عرضی و با استفاده از تحلیل تاریخچه زمانی غیر خطی و روش انتگرال گیری مستقیم به تحلیل مدل ها پرداخته شده است. نتایج این تحلیل ها نشان می دهد که در سازه های نامنظم استفاده از جداگرهای اصطکاکی پاندولی در ستون های خارجی و استفاده از جداگرهای هسته سربی در ستون های داخلی عملکرد مناسب تری نسبت به دیگر ترکیبات از خود نشان داده و جابجایی نسبی طبقات و برش پایه کمتر و درصد جذب انرژی بیشتری در آن بوجود آمده است که از دلایل آن می توان به خصوصیات جداگرهای اصطکاکی پاندولی درتناسب نیروی اعمالی از سامانه ی جداگری با جرم سازه و عدم وقوع پیچش در سازه های نامنظم اشاره کرد. در سازه های منظم بر خلاف سازه های نامنظم، استفاده از جداگرهای اصطکاکی پاندولیدر ستون های داخلی و جداگرهای لاستیکی در ستون های بیرونی عملکرد مناسب تری در کاهش جابجایی نسبی طبقات داشته است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Evaluating Seismic Response of Plan Irregular Buildings Using Combination of Lead Rubber Bearing Isolator and Friction Pendulum System

نویسندگان [English]

  • Mahmoud Reza Shiravand 1
  • Hesam Ketabdari 2
1 Assistant Professor, Faculty of Civil Engineering, Shahid Beheshti University, Tehran, Iran
2 PhD Student, Faculty of Civil engineering, Shahid Beheshti University, Tehran, Iran
چکیده [English]

Recently, base isolation techniques are applied as a resisting system to protect the structures from seismic and dynamic loadings. Due to their importance, in this paper, an optimum arrangement of lead rubber bearing (LRB) and friction pendulum system (FPS) is investigated in irregular buildings and its performance is compared with a regular case. For this purpose, 3 types of irregularities have been adopted. Accordingly, 3, 7 and 10 story buildings have been performed and 12 possible combination have been applied for the isolators in each model. Afterwards, the numerical models have been analyzed using nonlinear time-history analysis and direct integration method and applying 7 earthquake records along the longitudinal and transverse directions of the building. The obtained results of the numerical study show that the application of FPS and LRB isolators in outer and inner columns respectively, led to a better performance compared to the other arrangements by reduction of the inter-story drifts as well as base shear and enhancement of the energy dissipation which is due to the characteristics of FPS isolators in balancing the applied forces with the building’s mass and prevention of torsion occurrence in irregular structures. Unlike the irregular buildings, application of FPS and LRB isolators in inner and outer columns, result in a better performance by reducing the story drifts in regular structures.

کلیدواژه‌ها [English]

  • Lead Rubber Bearing
  • Friction Pendulum System
  • Nonlinear time history analysis
  • Optimum Arrangement
  • Irregular Buildings
[1] Zayas, V. A., Low, S. A., & Mahin, S. A. (1987). The FPS earthquake resisting system experimental report. Earthquake Engineering Research Center.
[2] Jangid, R. S. (2005). Optimum friction pendulum system for near-fault motions. Engineering Structures, 27(3), 349-359.
[3] Eröz, M., & DesRoches, R. (2013). The influence of design parameters on the response of bridges seismically isolated with the friction pendulum system (FPS). Engineering Structures, 56, 585-599.
[4] Castaldo, P., & Ripani, M. (2016). Optimal design of friction pendulum system properties for isolated structures considering different soil conditions. Soil Dynamics and Earthquake Engineering, 90, 74-87.
[5] Lomiento, G., Bonessio, N., & Benzoni, G. (2013). Friction model for sliding bearings under seismic excitation. Journal of Earthquake Engineering, 17(8), 1162-1191.
[6] Krishnamoorthy, A., & Anita, S. (2016, February). Soil–structure interaction analysis of a FPS-isolated structure using finite element model. In Structures (Vol. 5, pp. 44-57). Elsevier.
[7] Mazza, F., & Mazza, M. (2016). Nonlinear seismic analysis of irregular rc framed buildings base-isolated with friction pendulum system under near-fault excitations. Soil Dynamics and Earthquake Engineering, 90, 299-312.
[8] Peng, P., Dongbin, Z., Yi, Z., Yachun, T., & Xin, N. (2018). Development of a tunable friction pendulum system for semi‐active control of building structures under earthquake ground motions. Earthquake Engineering & Structural Dynamics, 47(8), 1706-1721.
[9] Bao, Y., & Becker, T. C. (2018). Effect of design methodology on collapse of friction pendulum isolated moment-resisting and concentrically braced frames. Journal of Structural Engineering, 144(11), 04018203.
[10] Dao, N. D., Ryan, K. L., & Nguyen‐Van, H. (2019). Evaluating simplified models in predicting global seismic responses of a shake table–test building isolated by triple friction pendulum bearings. Earthquake Engineering & Structural Dynamics, 48(6), 594-610.
[11] Mkrtychev, O. V., Dzhinchvelashvili, G. A., & Bunov, A. A. (2014). Study of lead rubber bearings operation with varying height buildings at earthquake. Procedia Engineering, 91, 48-53.
[12] Hu, K., Zhou, Y., Jiang, L., Chen, P., & Qu, G. (2017). A mechanical tension-resistant device for lead rubber bearings. Engineering Structures, 152, 238-250.
[13] Moghadam, S. R., & Konstantinidis, D. (2017). Finite element study of the effect of support rotation on the horizontal behavior of elastomeric bearings. Composite Structures, 163, 474-490.
[14] Faal, H. N., & Poursha, M. (2017). Applicability of the N2, extended N2 and modal pushover analysis methods for the seismic evaluation of base-isolated building frames with lead rubber bearings (LRBs). Soil Dynamics and Earthquake Engineering, 98, 84-100.
[15] Hamaguchi, H., Wake, T., Yamamoto, M., & Kikuchi, M. (2019). Practical application of lead rubber bearings with fail‐safe mechanism. Japan Architectural Review.
[16] Bhandari, M., Bharti, S. D., Shrimali, M. K., & Datta, T. K. (2019). Seismic fragility analysis of base-isolated building frames excited by near-and far-field earthquakes. Journal of Performance of Constructed Facilities, 33(3), 04019029.
[17] Torunbalci, N., & Ozpalanlar, G. (2008, October). Earthquake response analysis of mid-story buildings isolated with various seismic isolation techniques. In The 14th World Conference on Earthquake Engineering, Beijing, China.
[18] Vaez, S. H., Naderpour, H., Kalantari, S. M., & Fakharian, P. (2012). Proposing the Optimized Combination of Different Isolation Bearings Subjected to Near-Fault Ground Motions. 15th World Conference on Earthquake Engineering (15WCEE), September, pp. 24-28.
[19] Deosarkar, M. U., & Gowardhan, S. D. (2015). Non Linear Dynamic Response Of Combined Isolation System On Symmetric And Asymmetric Buildings. International Journal of Informative & Futuristic Research (IJIFR), 3, 1021-1035.
[20] Zaheer, R., Samdani, Hassan,. Banulatha.G.N, Manu.J,. (2015). Comparative Study on Performance of Multi-Storey Structure Rubber Bearing and Friction Pendulum Base Isolation Systems, International Journal of Advanced Research in Eduation Technology (IJARET), 2(2).
[21] Tolani, S., & Sharma, A. (2016). Effectiveness of base isolation technique and influence of isolator characteristics on response of a Base isolated building. American Journal of Engineering Research, 5(5), 198-209.
[22] Cancellara, D., & De Angelis, F. (2016). Nonlinear dynamic analysis for multi-storey RC structures with hybrid base isolation systems in presence of bi-directional ground motions. Composite Structures, 154, 464-492.
[23] Nithin, A. V., & Jayalekshmi, R. Seismic Analysis of Multi Storey RC Buildings supported on Single and Combined Base Isolation Systems.
[24] Ryan, K. L., Okazaki, T., Coria, C. B., Sato, E., & Sasaki, T. (2018). Response of hybrid isolation system during a shake table experiment of a full‐scale isolated building. Earthquake Engineering & Structural Dynamics, 47(11), 2214-2232.
[25] B.H.R. Center, Guidelines for Seismic Isolated Buildings,(2010), BHRC, In persian,Tehran.Iran,.
[26] Cardone, D., Gesualdi, G., & Brancato, P. (2015). Restoring capability of friction pendulum seismic isolation systems. Bulletin of Earthquake Engineering, 13(8), 2449-2480.
[27] B.H.R. Center, Standard No.2800. Iranian Code of Practice for Seismic Resistant Design of Buildings, (2016), BHRC Publication, Forth Edition, In persian, Tehran.Iran.
[28] Manual, S. C. (2005). American institute of steel construction. Inc., Thirteenth Edition, First Print.
[29] Mokha, A. S., Constantinou, M. C., & Reinhorn, A. M. (1990). Experimental study and analytical prediction of earthquake response of a sliding isolation system with a spherical surface.
[30] Sharbatdar, M. K., Vaez, S. H., Amiri, G. G., & Naderpour, H. (2011). Seismic response of base-isolated structures with LRB and FPS under near fault ground motions. Procedia Engineering, 14, 3245-3251.
[31] Bazafshan, A., Khaji, N. (2016). Seismic response of base-isolated high-rise buildings under long-period ground motions. Modares Civil Engineering journal, 16(2), 41-52.
[32] HOSEINI, V. S., & Naderpour, H. (2016). Base-isolated structures with optimized distribution of lrb and fps isolators. journal of Modeling in engineering, 14(44), 105-115.