بررسی رفتار لرزه ای و مشخصات مفاصل سازه ای تیرها و قاب‌های کامپوزیت سیمانی مسلح توانمند HPFRCC

نوع مقاله : علمی - پژوهشی

نویسندگان

1 دانشیار، دانشکده مهندسی عمران، دانشگاه سمنان، سمنان، ایران

2 دانشگاه سمنان

چکیده

بتن های الیافی توانمند سیمانی کامپوزیتی HPFRCC دارای خصوصیات مناسب نسبت به بتن معمولی و دارای رفتار سخت-شوندگی کرنش تحت کشش و قابلیت جذب انرژی بالا بوده و منجر به سازه هایی با ظرفیت بالاتر و تامین ایمنی بیشتر در برابر زلزله نایل می شوند و از طرفی فیوزهای سازه ای، نقاطی از سازه هستند که به سبب اعمال نیرو های داخلی زیاد مستعد تخریب شده و مفاصل پلاستیک در آن ها متمرکز شده و تخریب های احتمالی آغاز می گردد، لذا این مصالح نوین میتوانند بعنوان فیوزهای سازه ای بکار روند. نحوه‌ تشکیل و خصوصیات مفاصل پلاستیک در تیرها و قاب های ساخته شده با HPFRCC با درنظرگرفتن 12 تیر و 12 قاب بتنی در این مقاله مورد بررسی قرار می گیرد و متغیرهایی نظیر مقاومت فشاری و نوع بتن معمولی و HPFRCC، و درصد بار قائم ستون ها انتخاب شدند و بقیه پارامترها ثابت فرض شدند. نتایج نشان ‌داد که در تیرهای HPFRCC با افزایش مقاومت فشاری، مقادیر نیروی و تغییرمکان حداکثر، انحنا و طول ناحیه پلاستیک افزایش یافت. تیرهای HPFRCC تحت بارگذاری متمرکز، دارای بیشترین تغییرمکان و جذب انرژی و تحت بارگذاری یکنواخت، بیشترین نیرو و تیرهای تحت بارگذاری دو نقطه ای دارای مقدار بیشتر طول ناحیه پلاستیک نسبت به تیرهای تحت بارگذاری یکنواخت بودند. قاب های HPFRCC دارای نیرو و تغییرمکان جانبی به ترتیب حدود ٧ و ١٨ % بیشتر نسبت به قاب بتنی مشابه خود بوده و میزان انحنا و طول ناحیه پلاستیک نیز به ترتیب تا ١٨/١ و ٣٠/١ برابر نسبت به قاب های RC افزایش یافتند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

The Investigation of Seismic behaviour and structural hinge Characteristics of HPFRCC Beams and Frames

نویسندگان [English]

  • Mohammad Kazem Sharbatdar 1
  • Zakieh Sadat Shariatpanahi 2
1 Associate Professor, Civil Engineering Faculty, Semnan University, Semnan, Iran
2 Semnan University
چکیده [English]

Structural fuses are some points in structure which are exposed of destruction due to vast internal forces and plastic joints are summed up in them and possible destruction would start in these points, so the best way is substituting well-featured materials such as HPFRCC rather than conventional concrete against earthquake with rigidity behaviour of strain under tension and capability of high energy absorption before failure. The formation and features of plastic joints in HPFRCC beams and frames are investigated in this paper considering 12 concrete and HPFRCC beams and 12 columns with variables such as compressive strength, lateral load type, axial load in column. Results showed that in HPFRCC beams, increasing compressive strength leaded into increasing force and displacement, curve, plastic joint length. HPFRCC beams under concentrated loading had the more displacement and energy absorption, and beam under uniform loading had the maximum force and the beams under two-point loading had longer plastic hinge rather than beams under uniform loading. HPFRCC frames had lateral force and displacement of respectively 7% and 18% more than their relevant concrete frames and curvature, plastic joint length were increased up to 1.18 and 1.30 times of RC frames, respectively. Therefore the HPFRCC material is effective and appropriate for new concrete structures subjected cyclic loading.

کلیدواژه‌ها [English]

  • "Seismic performance"
  • "Plastic joint"
  • "HPFRCC"
  • "Concrete frame"
  • "Curvature"
  • "plastic joint length"
[1] Naaman, A.E., Reinhardt, H.W. (2003). Setting the stage: toward performance-based classification of FRC composites. In High Performance Fiber Reinforced Cement Composites (HPFRCC-4), Proc. Of the 4th Int’l RILEM Workshop, A.E. Naaman and H.W. Reinhardt.
[2] Romualdi J.P., Batson G.B. (1963). Mechanics of crack arrest in concrete. Journal of Engineering Mechanics, ASCE Proc., 89(EM3):147–168.
[3] Bolander, J. (1999). Spring network model of fiber reinforced cement composites. High Performance Fiber Reinforced Cement Composites. HPFRCC 3,. H.W. Reinhardt and A.E. Naaman, 341-350.
[4] Vandewalle, L. (2003). RILEM TC 162-TDF: Test and design methods for steel fibre reinforced concrete, Sigma-epsilon-design method - Final Recommendation. Materials and Structures 36(262):560-567.
[5] Krenchel, H. Stang, H. (1989). Stable microcracking in cementitious materials. In Brittle Matrix Composites 2. A.M. Brandt and J.H. Marshall, eds., 20-33.
[6] Majumdar A.J. Ryder J.R. (1968). Glass fiber reinforcement of cement products. Glass Technol, 9(3), 78–84.
[7] Bache, H. (1981). Densified cement/ultra-fine particle-based materials, CBL Report No. 40, Aalborg Portland, ISBN 87-89132-00-9.
[8] JSCE. (2008). Recommendations for design and construction of high performance fiber reinforced cement composites.
[9] Lepech, M.D. Li, V.C. (2007). Large scale processing of engineered cementitious composites. ACI Materials Journal.
[10] Wang, S. Li, V.C. (2006). High early strength engineered cementitious composites. ACI Materials Journal. 103(2), 97-105.
[11] Lepech, M.D., Li, V.C., Robertson, R.E. Keoleian, G.A. (2007). Design of ductile engineered cementitious composites for improved sustainability. ACI Materials Journal.
[12] Li, V.C., Wu, H.C., and Chan, Y.W. (1996). Effect of plasma treatment of polyethylene fibers on interface and cementitious composite properties. J. of Amer. Ceramics Soc., 79 (3), 700-704.
[13] Farhat, F.A., Nicolaides, D., Kanellopoulos, A., Karihaloo, B.L. (2007). High performance fiber-reinforced cementitious composite (CARDIFRC)-performance and application to retrofitting, Engineering Fracture Mechanics, 74, 151-167.
[14] Habel, H., Gauvreau, P. (2008). Response of UHPFRC to impact and static loading, Cement and Concrete Composites, 938-946.
[15] Lee, M. G., Wang, Y. C, Chiu, C. T. (2007). Apreliminary study of reactive powder concrete as a new repair material, Construction and building materials, 21, 182-189.
[16] Wang, S. (2005). Michromechanics based matrix design for engineered cementitious composites, PhD dissertation, Michigan University.
[17] Naaman, A.E., Paramasivam, P., Balazs, G., Bayasi, Z.M., Eibl, J., Erdelyi, L., Hassoun, N.M., Krstulovic, N., Li, V.C. Lohrmann, G. (1996). Reinforced and prestressed concrete using HPFRCC matrices. High performance fiber reinforced cement composites 2.
[18] Han, T. S., and Feenstra, P. H., and Billington, S. L. (2003). Simulation of highly ductile fiber-reinforced cement-based composite components under cyclic loading, ACI Structural Journal, 100(6), 749-757.
[19] Qian, S. Li, V. C. (2007). Simplified inverse method for determining the tensile strain capacity of strain hardening cementitious composites, Journal of Advanced Concrete Technology, 5(2), 235-246.
[20] Li, V.C. (2007). Engineered cementitious composites (ECC) – material, structural, and durability performance, University of Michigan, Ann Arbor, MI 48109
[21] Suwannakarn, S.W. (2009).. Post-cracking characteristics of high performance fiber reinforced cementitious composites, PhD Dissertation, Michigan University.
[22] Ahmadi, M., Kheyrodin, A., Naderpur, H., (1389), Investigation of behaviour and comparison of different design codes
on CFT columns, Journal of modelling in engineering, fourth year, No. 22.
[23] Szerszen, M.M., Szwed, A. Li, V.C. (2006). Flexural response of reinforced beam with high ductility concrete material. In Proc. Int. Symp. Brittle Matrix Composites 8. A.M. Brandt, V.C. Li and I.H. Marshall, eds., 263-274.
[24] Canbolat, B. A. Parra-Montesinos, G. J. Wight, J. K. (2005). Experimental study on the seismic behavior of high-performance fiber reinforced cement composite coupling beams. Structural Journal, 102(1), 159-166. 
[25] Abrishami H.H., Cook, W.D., Mitchell, D. (1995). Influence of Epoxy Coated Reinforcement on Response of Normal and High-Strength Concrete Beams. ACI Structural Journal, V. 92, No. 2, pp. 157-166.
[26] Hemmati, A. (1392), Investigation of flexural behaviour of HPFRCC beams and frames. PhD Thesis, Semnan University.
 [27] Fukuyama, H., Matzuzaki, Y., Sato, Y., Iso, M. Suwada, H. (2000). Structural performance of engineered cementitious composite elements. Composite and Hybrid Structures, 6th ASCCS Int’l Conf. on Steel-Concrete Composite Structures, 969- 976.
[28]Parra-Montesinos, G. (2006). Proposed addition to ACI Code 318-05 on shear design provisions for fiber reinforced concrete members.
 
[29] Xu, Sh., Hou, L.J.  Zhang, X.F. (2012). Shear Behavior of Reinforced Ultrahigh Toughness Cementitious Composite Beams without Transverse Reinforcement. National Cheng Kung University, ASCE Structural Journal.
[30]Parra-Montesinos, G. J. (2005), High-Performance Fiber-Reinforced Cement Composites: An Alternative for Seismic Design of Structures. ACI Structural Journal, V. 102, No. 5, September-October 2005, pp. 668-675
[31] José Ferrari, V., Bento de Hanai, J. Alves de Souza, R. (2013) . Flexural strengthening of reinforcement concrete beams using high performance fiber reinforcement cement-based composite (HPFRCC) and carbon fiber reinforced polymers (CFRP). Construction and Building Materials,48 ,485–498.
[32] Choi, W.Ch., Yun, H.D., Cho, Ch.G. Feo, L. (2014). Attempts to apply high performance fiber-reinforced cement composite (HPFRCC) to infrastructures in South Korea. Composite Structures 109 (2014) 211–223.
[33] Sharbatdar, M.K, Parsa, H. (1396).  The evaluation of strengthening effect of reinforced concrete structures with FRP on seismic dynamic performance of the structures, Journal of Structural and Construction Engineering (JSCE), :(DOI) 10.22065/jsce.2017.97090.1312.
[34] Kheyroddin, A., Sharbatdar, M.K,  Ashari , A. (1395).  Experimental Evaluation of RC Damaged Frames Rehabilitated with CFRP Composite layers at Critical Zones, Journal of Structural and Construction Engineering (JSCE), (DOI)10.22065/jsce.2017.86033.1173.
[35] Fallah, M.M.,  Sharbatdar , M.K.,  Kheyroddin, A. (1397).  Experimental Study of the Performance of Two-way RC Slabs Retrofitted with High Performance Fibre Reinforced Cement Composite (HPFRCC) prefabricated laminates, Journal of Structural and Construction Engineering (JSCE), :(DOI) 10.22065/jsce.2018.120672.1480.
[36] Fallah, M.M.,   Sharbatdar, M.K.,   Kheyroddin, A. (1397).  Experimental Strengthening of the Two-way RC Slabs with High Performance Fiber Reinforced Cement Composites Prefabricated sheets, Journal of Rehabilitation in Civil Engineering, DOI: 10.22075/jrce.2018.14532.1266.
[37]Help of ABAQUS. (2008). Getting started with ABAQUS.
[38]Park, R., Paulay, T. (1975). Reinforced concrete structures.
[39]Gencturk B., Elnashai A.S. (2012). Numerical modeling and analysis of ECC structures, materials and structures, 46(4), 663-682.