مشخصات مکانیکی بتن حاوی سنگدانه درشت دانه بتن بازیافتی و میکروسیلیس

نوع مقاله : یادداشت پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد مهندسی سازه، شهاب دانش قم

2 استادیار دانشگاه شهاب دانش قم

3 دانشجوی کارشناسی ارشد سازه، دانشکده فنی و مهندسی دانشگاه شهاب دانش قم ایران

4 گروه آموزشی مهندسی عمران/ دانشگاه تربیت دبیر شهید رجایی

5 مربی گروه عمران، دانشکده فنی و مهندسی، دانشگاه شهاب دانش قم، ایران

چکیده

در سال‌های اخیر توسعه فناوری بتن این امکان را فراهم نموده تا بتوان بتن‌های توانمندی تولید نمود که کارایی و مقاومت آن فراتر از بتن معمولی باشد. امروزه استفاده از مواد بازیافتی و پوزولان‌ها در راستای کاهش هزینه‌های جاری و همچنین کاهش یا حذف مشکلات زیست محیطی به یکی از مباحث مورد علاقه اکثر محققین تبدیل شده است. در این پژوهش امکان استفاده از میکروسیلیس و همچنین بتن بازیافتی به عنوان سنگدانه بازیافتی در بتن مطالعه شده است. برای این منظور از 6 طرح اختلاط استفاده گردید و نقش جایگزینی درصدهای مختلف سنگدانه بازیافتی درشت دانه(20 و 50 درصد) در بتن همراه با 6 درصد میکروسیلیس بر روی مقاومت فشاری و کششی بتن برای نمونه های بتن 7، 28 و 56 روزه مورد ارزیابی قرار گرفت. بر اساس نتایج به دست آمده، بتن حاوی سنگدانه درشت دانه بتن بازیافتی و میکروسیلیس مقاومت فشاری و کششی بهتری نسبت به بتن شاهد نشان دادند. به عنوان نمونه مقاومت فشاری بتن حاوی 6 درصد میکروسیلیس و 20 درصد سنگدانه بتن بازیافتی در سن 56 روز در مقایسه با بتن مرجع 14 درصد افزایش می یابد در حالیکه با افزایش درصد سنگدانه بتن بازیافتی به میزان 50 درصد، این پارامتر به میزان 4 درصد افزایش می‌یابد که این موضوع تاثیر معکوس افزایش میزان سنگدانه بتن بازیافتی بر مقاومت فشاری را نشان می‌دهد. در نهایت نتایج حاصل از آزمایشات تحقیق حاضر با روابط آیین‌نامه ای و تجربی مختلف و همچنین داده‌های آزمایشگاهی محققین قبلی مورد مقایسه قرار گرفته است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Mechanical Properties of Concrete with Silica Fume and Coarse Recycled Aggregate Concrete

نویسندگان [English]

  • Mohammad Reza Aghabaghery 1
  • Mehdi Arezoumandi 2
  • Amir Hossein Amoohosseini 3
  • Mojtaba Karimaei Tabarestani 4
  • Hadi Alizadeh 5
1 M. Sc. student of structural eng., shahab danesh university
2 Dept. Civil Eng., Shahab danesh University
3 M Sc student of structural Eng., shahab danesh University, Qom, Iran.
4 Dept. Civil Eng., Tarbyat Dabir Shahid Rajaee
5 Instructor of civil engineering, Shahab danesh University, Qom, Iran
چکیده [English]

Recently, there has been an increasing trend toward the use of sustainable materials. Sustainability helps the environment by reducing the consumption of non-renewable natural resources. Concrete – the second most consumed material in the world after water – uses a significant amount of non-renewable resources. As a result, an experimental investigation was conducted to study the hardened properties of concrete constructed with 20% and 50% recycled concrete aggregate (RCA) (coarse) as well as 6% silica fume. This experimental program consisted of six mix designs. Experimental results showed that the compressive and tensile strength of concrete improve by using recycled concrete aggregate (RCA) (coarse) and silica fume in the mix design. For example, the compressive strength of concrete containing 6% silica fume and 20% recycled concrete aggregate at age of 56 days was 14% greater than reference concrete mix, while with increasing percentage of recovered concrete aggregate by 50%, this parameter increased by only 4% which shows the inverse effect of increasing the amount of recovered concrete aggregate on compressive strength. The hardened properties of concrete were compared with the provisions of the international design codes (U.S., Australia, Canada, Europe, and Japan) as well as a database of conventional concrete. Results showed that the RCA has superior hardened properties compared with the reference concrete mix.

کلیدواژه‌ها [English]

  • Recycled Concrete Aggregate
  • Conventional Concrete
  • Hardened Properties
  • experimental study
  • Decreasing environmental hazards
[1] World Business Council for Sustainable Development, (2009), Journal of The cement sustainability initiative.
[2] ACI Committee 318-14, (2014), Building Code Requirements for Structural Concrete and Commentary.
[3] Siddique, R. and Iqbal Khan, M., (2011), Supplementary Cementing Materials, Engineering Materials, SpringerVerlag Berlin Heidelberg.
[4] ASTM C1240 -11, (2011), Standard Specification for Use of Silica Fume for Use as a Mineral Admixture in HydraulicCement Concrete, Mortar, and Grout.
[5] Babu, K.G. and Prakash, P.V.S., (1995), Efficiency of silica fume in concrete, Cement and concrete Research, 25(6),
1273–1283.
[6] Sellevold, E.J. and Redjy, F.F., (1983), Condensed silica fume (microsilica) in concrete: water demand and strength
development, , ACI SP-79, pp. 677–694, In: Malhotra, V.M. (ed.) The Use of Fly Ash, Silica Fume, Slag and Other
Mineral By-Products in Concrete.
[7] Rao, G.A., (2003), Investigations on the performance of silica fume-incorporated cement pastes and mortars, Cement
and concrete Research, 33(11), 1765–1770.
[8] Wild, S., Sabir, B. B., and Khatib, J. M., (1995), Factors influencing strength development of concrete containing silica
fume, Cement and concrete Research, 25(7),1567–1580.
[9] Hooton, R. D., (1993), Influence of silica fume replacement of cement on physical properties and resistance to sulphate
attack freezing and thawing, and alkali–silica reactivity, ACI Material Journal, 90(2), 143–152.
[10]Gonen, T. and Yazicioglu, S., (2007), The influence of mineral admixtures on the short and long-term performance of
concrete, Journal of Building Environment, 42: 3080–3085.
[11]Igarashi, S. I., Kawamura, A., and Watanabe, M., (2005), Evaluation of capillary pore size characteristics in highstrength concrete at early ages”, Cement and concrete Research, 513–519.
[12]Perraton, D., Aitcin; P.C. and Vezina, D., (1988), Permeability of silica fume concretes, ACI Special Publications, SP108, 63–84.
[13]Berke, N. S., (1989), Resistance of micro-silica concrete to steel corrosion, erosion and chemical attack, ACI Special
Publications, SP 114, 861–886.
[14]Chandra, S., (2004), Implications of using recycled construction and demolition waste as aggregate in concrete, Session
lead paper, International Conference on Sustainable Waste Management and Recycling, Kingston University, London.
[15]Mazloom, M., Ramezanianpour, A. and Brooks, J.J, (2004), Effect of silica fume on mechanical properties of highstrength concrete”, Cement and Concrete Composites, 26(4), 347-357.
[16]Manish S. and Sanjay G., (2016), Strength and Permeability of Recycled Aggregate Concrete Containing Silica Fumes,
International Journal of Innovative Research in Science, Engineering and Technology, 5(10), 17675- 17682.
[17]Ramalinga, C. P, Abhilash, N. and Harika, B., (2017), Study on Mechanical Properties of Recycled Aggregate Concrete
with Silica Fume as Partial Replacement of Cement, International Journal of Engineering Technology Science and
Research, 4(10), 1202-1210.
[18]ACI Committee 211, (1991), Guide for selecting proportions for high-strength concrete with Portland cement and fly
ash. ACI226.4R, ACI Materials Journal.
[19]ASTM C150-11, (2011), Standard Specification for Portland Cement.
[20]ASTM C29-11, (2011), Standard Specification for Bulk Density (“Unit Weight”) and Voids in Aggregate.
[21]ASTM C39-11, (2011), Standard Specification for Compressive Strength of Cylindrical Concrete Specimens.
[22]ASTM C496-11, (2011), Standard Specification for Splitting Tensile Strength of Cylindrical Concrete Specimens.
]23]رمضانیان پور، ع.،)1376 ،)بتن با مقاومت زیاد ، سمینار بین المللی کاربرد میکروسیلیس در بتن، تهران.
[24]ACI Committee 363, (1992), State of the art report on high-strength concrete, American Concrete Institute, ACI363-R,
Farmington Hills (Michigan).
[25]BS EN 206-1, (2001), Concrete, Specification, performance, production and conformity.
[26]AS 3600-2009, (2009), Concrete structures, standard by Standards Australia.
[27]JSCE Guidelines for Concrete, (2007), Standard Specifications for concrete structures, No 16, Japan Society of Civil
Engineers.
[28]CEB-FIP, (1990), High-strength concrete state of the art report, London, Thomas Telford.
[29]AASHTO, (2006), Interim bridge design specifications and commentary, American Association of Highway and
Transportation Officials (AASHTO), Washington (DC).
[30]NEN 6722, (2000), Regulations concrete, Construction (VBU 1988), with correction sheet.
[31]Akazawa, T. (1953), Tension test method for concrete, Bull. No. 16, International Association of Testing and Research
Laboratories for Materials and Structures.
[32]Carneiro FLLB and Barcellos A, (1953), Concrete tensile strength, Bull. No. 13, International Associate of Testing and
Research Laboratories for Materials and Structures.
[33]Olokun F, (1991), Prediction of concrete tensile strength from its compressive strength: an evaluation of existing
relations for normal weight concrete, ACI Material Journal, 88(3), 302–309.
[34]Carino, N. J and Lew, H. S, (1982), Re-examination of the relation between splitting tensile and compressive strength
of normal weight concrete, ACI Material Journal, 79(3), 214–219.
[35]Gardner, N. J, (1990), Relationship of the punching shear capacity of reinforced concrete slabs with concrete strength,
ACI Structural Journal, 87(1), 66–71.
[36]Ahmad, S. H and Shah, S. P., (1985), Structural properties of high strength concrete and its implications for precast
prestressed concrete, PCI Journal, 30(6), 92–119.
[37]Hueste M., Chompreda, P., Trejo, D., Cline, D. and Keating, P., (2004), Mechanical properties of high-strength
concrete for prestressed members, ACI Structural Journal, 101(4), 457–65.
[38]Dinakar, P., Babu, K., and Santhanam, M., Mechanical properties of high-volume fly ash self-compacting concrete
mixtures, Structural Concrete, 9(2), 109–116.
[39]Takafumi N., (2007), Database for Mechanical Properties of Concrete, http://bme.t.utokyo.ac.jp/researches/detail/concreteDB/index.html.
[40]Minitab, Incorporation, Minitab 17 Statistical Software [Computer software].