مطالعه اثر آلیاژ حافظه‌دار شکلی Ni-Ti در شکل‌پذیری دیوارهای برشی فولادی با ورق نازک

نوع مقاله : علمی - پژوهشی

نویسندگان

1 دانشیار، دانشکده مهندسی عمران، دانشگاه سمنان، سمنان، ایران

2 دانشکده عمران

3 استادیار، دانشکده مهندسی عمران، دانشگاه سمنان، سمنان، ایران

چکیده

نمونه‌های دیوار برشی فولادی سه طبقه با ورق نازک با مقیاس یک سوم، دارای درصدهای مختلف از آلیاژ حافظه دار شکلی Ni-Ti، تحت بار دوره ای قرار گرفت و توسط نرم افزار تحلیلی Opensees، مورد تجزیه و تحلیل واقع شد. همچنین یک نمونه دیوار برشی فولادی با ورق نازک بدون آلیاژ (SPSW-Base)، تحت بار دوره ای مشابه قرار گرفت و توسط نرم افزار Opensees، تحلیل شد و نتایج حاصل از بررسی نمونه‌های دیوار برشی فولادی دارای آلیاژ حافظه دار و نمونه دیوار برشی فولادی بدون آلیاژ ، با یکدیگر مقایسه گردید. کلیه دیوارهای مذکور دارای اتصال تیر به ستون صلب هستند. آلیاژ های حافظه دار شکلی در سه حالت در طبقات دیوار برشی فولادی به ترتیب در همه طبقات، فقط طبقه اول و سوم و فقط در طبقه میانی استفاده شده است. آلیاژهای حافظه دار به صورت ورق‌هایی در دور تا دور ورق فولادی دیوار برشی فولادی با ضخامتی برابر ضخامت ورق دیوار برشی فولادی و عرض متغیر به صورت درصدی از عرض کل ورق دیوار برشی فولادی استفاده شده است، به طوری که اگر عرض کل ورق دیوار برشی فولادی با B، وعرض آلیاژ به کار رفته باb، نمایش داده شود، هر یک از سه حالت ذکر شده بترتیب نمونه‌های b/B=18%,27%,36%,45% را شامل می شود.کلیه نمونه ها تحت تحلیل استاتیکی غیر خطی واقع شدند. پس از تحلیل، نمونه‌های دارای آلیاژ نسبت به نمونه ‌های بدون آلیاژ، شکلپذیری بیشتری را نشان دادند، به طوری که با افزایش درصد آلیاژ مصرفی شکل پذیری نیز افزایش یافت. همچنین از بین نمونه‌های سه حالت دارای آلیاژ، نمونه‌های حالت دوم یعنی حالت دیوار برشی فولادی که فقط در طبقه اول و سوم آن از آلیاژ استفاده شده بود، دارای شکل پذیری بیشتری نسبت به سایر نمونه ها بوده، به طوریکه شکل‌پذیری نمونه SPSW-b/B=45% ، در این حالت، 70/41 درصد بیشتر از نمونه SPSW-Base، می‌باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Study Effect of Ni-Ti Shape Memory Alloy on Ductility of Steel Plate Shear Walls

نویسندگان [English]

  • Madjid Gholhaki 1
  • atefe khosravikhor 2
  • Omid Rezayfar 3
1 Associate Professor, Faculty of Civil Engineering, Semnan University, Semnan, Iran
2 civil faculty
3 Assisstant Proffessor, Faculty of Civil Engineering, Semnan University, Semnan, Iran
چکیده [English]

Five specimens one third scale three-story single bay steel plate shear wall with variant percentage of Ni-Ti shape memory alloys(SMAs) under cycling loading were analyzed by Opensees software. Also one specimen steel plate shear wall without SMA (SPSW-Base) wase analyzed under same cycling loading by the same software. The result of analysis of five specimens steel plate shear walls with shape memory alloy and one specimen of steel plate shear wall without SMA, compared with each other. All specimens had rigid beam-to-column connections. Shape memory alloys used in three different type in SPSW’s stories respectively in first type,in all stories in second type, in just one first and third story and in third type in just middle story. Also these materials used as kind of plates which surrounde all side ofsteel plate ofwalls, with similar thickness to steel plate and variant widthsuch a percent of widths steel plate of SPSWs. If th whole width of steel plate shear wall is showed by ‘B’ and the whole width of used material by ‘b’, each three types respectively consist offive specimens with b/B=9%,18%,27%,36%,45%. All specimens were analyzed under nonlinear static analysis. After analysis, all specimens with shape memory alloy showed more ductility in comparision with the one without shape memory alloy (SPSW-Base). Also by increasing SMA ductility increased in steel plate shear walls. In addition among three different types, second wich, used SMA just in first and third story, showed more and better ductility. As an example the ductility of SPSW-b/B=45% in this type is 70/41% more than SPSW-Base.

کلیدواژه‌ها [English]

  • steel plate shear wall
  • Shape memory alloy
  • Ductility
  • OpenSees
  • Ni-Ti
[1] A. I. of S. (2005). Constr uction, Seismic provisions for structural steel buildings. American Institute of Steel Construction.
[2] Z.Ebrahimi, (1993). "Analytical study of bending on steel plate shear wall,"2013.(in Persian)
[3] C. Elgaaly, Mohamed and Caccese, Vincent and Du, “Postbuckling behavior of steel-plate shear walls under cyclic loads,” J. Struct. Eng., vol. 119, pp. 588--605.
[4] M. Lubell, Adam S and Prion, Helmut GL and Ventura, Carlos E and Rezai, (2000). “Unstiffened steel plate shear wall performance under cyclic loading,” J. Struct. Eng., vol. 126, pp. 453--460.
[5] M.Gholhaki,S.Sabouri, (2010). "Effect of ductility factor on behavior factor of steel plate shear walls,"pp.52-63. (in Persian).
[6] M.Rahgozar, (2013). "Assesment of exceeding strength factor of reinforced building with steel plate shear walls". (in Persian).
[7] A.Banazade,A.Maleki, (2015). "Analytical study of seismic behavior of wavy steel plate shear wall by ABAQUS software,"pp.1-7. (in Persian).
[8] P. M. Clayton, J. W. Berman, and L. N. Lowes, (2015). “Seismic performance of self-centering steel plate shear walls with beam-only-connected web plates,” JCSR, vol. 106, pp. 198–208.
[9] Mashhadiali, N and Gholhaki, M and Kheyroddin, A and Zahiri,H (2016). “Analytical evaluation of the vulnerability of framed tall buildings with steel plate shear wall to progressive collapse,” Int. J. Civ. Eng., vol. 14, pp. 595--608.
[10] H. R. K. N. Arabzadeh, Abolfazl and Korrani, (2017). “Numerical and experimental investigation of composite steel shear wall with opening,” Int. J. Steel Struct., vol. 17, pp. 1379--1389.
[11] A. Broujerdian, V and Shayanfar, M (2017). “Corner Crack Effect on the Seismic Behavior of Steel Plate Shear Wall System,” Civ. Eng. Infrastructures J., vol. 50, pp. 311--332.
[12] M. Boroschek, Ruben L and Farias, Gloria and Moroni, Ofelia and Sarrazin, (2007). “Effect of SMA braces in a steel frame building,” J. Earthq. Eng., vol. 11, pp. 326--342.
[13] Chang WS, Araki Y. (2016). Use of shape-memory alloys in construction: a critical review. Proc Inst Civ Eng: Civ Eng. 169(2):87–95.
[14] Branco M, Gonçalves A, Guerreiro L, Ferreira J. (2014). Cyclic behavior of composite timber-masonry wall in quasi-dynamic conditions reinforced with superelastic damper. Constr Build Mater. 52:166–76.
[15] Parulekar YM, Ravi Kiran A, Reddy GR, Singh RK, Vaze KK. (2014). Shake table tests and analytical simulations of a steel structure with shape memory alloy dampers. Smart Mater Struct. 23(12):125002.
[16] Dieng L, Helbert G, Chirani SA, Lecompte T, Pilvin P. (2013). Use of Shape Memory Alloys damper device to mitigate vibration amplitudes of bridge cables. Eng Struct. 56:1547–56.
[17] Torra V, Auguet C, Isalgue A, Carreras G, Terriault P, Lovey FC. (2013). Built in dampers for stayed cables in bridges via SMA. The SMARTeR-ESF project: a mesoscopic and macroscopic experimental analysis with numerical simulations. Eng Struct. 49:43–57.
[18] Massah SR, Dorvar H. (2014). Design and analysis of eccentrically braced steel frames with vertical links using shape memory alloys. Smart Mater Struct. 23(11):115015.
[19] Yang CSW, Desroches R, Leon RT. (2010). Design and analysis of braced frames with shape memory alloy and energy-absorbing hybrid devices. Eng Struct. 32(2):498–507.
[20] Leon R, Gao Y. (2016). Resiliency of steel and composite structures. Front Struct Civ Eng. 10(3):239–53.
[21] Fang C, Yam MCH, Lam ACC, Xie LK. (2014). Cyclic performance of extended end-plate connections equipped with shape memory alloy bolts. J Constr Steel Res. 94:122–36.
[22] Yam MCH, Fang C, Lam ACC, Zhang YY. (2015). Numerical study and practical design of beam-to-column connections with shape memory alloys. J Constr Steel Res. 104:177–92.
[23] Wang W, Chan TM, Shao HL, Chen YY. (2015). Cyclic behavior of connections equipped with NiTi shape memory alloy and steel tendons between H-shaped beam to CHS column. Eng Struct. 88:37–50.
[24] Wang W, Chan TM, Shao HL. (2015). Seismic performance of beam–column joints with SMA tendons strengthened by steel angles. J Constr Steel Res. 109:61–71.
[25] Wang W, Fang C, Liu J. (2017). Self-centering beam-to-column connections with combined superelastic SMA bolts and steel angles. J Struct Eng ASCE. 04016175.
[26] Fang C, Wang W, He C, Chen YY. (2017). Self-centring behaviour of steel and steel-concrete composite connections equipped with NiTi SMA bolts. Eng Struct. 150:390–408.
[27] Dezfuli FH, Alam MS. (2013). Shape memory alloy wire-based smart natural rubber bearing. Smart Mater Struct. 22(4):045013.
[28] Ozbulut OE, Hurlebaus S. (2010). Seismic assessment of bridge structures isolated by a shape memory alloy/rubber-based isolation system. Smart Mater Struct. 20(1):015003.
[29] Shahverdi M, Czaderski C, Motavalli M. (2016). Iron-based shape memory alloys for prestressed near-surface mounted strengthening of reinforced concrete beams. Constr Build Mater. 112:28–38.
[30] F. Graesser, EJ and Cozzarelli, (1991). “Shape-memory alloys as new materials for aseismic isolation,” J. Eng. Mech., vol. 117, pp. 2590--2608.
[31] R. Dolce, Mauro and Cardone, Donatello and Marnetto. (2000). “Implementation and testing of passive control devices based on shape memory alloys,” Earthq. Eng. & Struct. Dyn., vol. 29, pp. 945--968.
[32] A.-Q. Han, Yu-Lin and Xing, De-Jin and Xiao, Er-Tian and Li, “NiTi-wire shape memory alloy dampers to simultaneously damp tension, compression, and torsion,” {Modal Anal., vol. 11, pp. 1067--1084, 2005.
[33] C. Ma, Hongwei and Cho, “Feasibility study on a superelastic SMA damper with re-centring capability,” Mater. Sci. Eng. A, vol. 473, pp. 290--296, 2008.
[34] R. T. Speicher, Matthew and Hodgson, Darel E and DesRoches, Reginald and Leon, “Shape memory alloy tension/compression device for seismic retrofit of buildings,” J. Mater. Eng. Perform., vol. 18, pp. 746--753, 2009.
[35] M.Saberdel-Sadeh,M.Ghasemie,"improvement and recovery of concrete buildings with shape memory alloys,"2010.(in Persian).
[36] S. Mortazav, SMR and Ghassemieh, M and Motahari, “Seismic control of steel structures with shape memory alloys,” Int. J. Autom. Control Eng., 2013.
[37] M. DesRoches, Reginald and McCormick, Jason and Delemont, “Cyclic properties of superelastic shape memory alloy wires and bars,” J. Struct. Eng., vol. 130, pp. 38--46, 2004.
[38] B. Moradi, Saber and Alam, M Shahria and Asgarian, (2014). “Incremental dynamic analysis of steel frames equipped with NiTi shape memory alloy braces,” Struct. Des. Tall Spec. Build., vol. 23, no. 1406--1425.
[39] Hooshmand, M and Rafezy, B and Hosseinzadeh, Y. (2015). “Evaluating the Seismic Performance of Steel-SMA Hybrid Braces,” Civ. Eng. Infrastructures J., vol. 48, pp. 285--296.
[40] R. Bajoria, Kamalkishor M and Jadhav, (2017). “Performance assessment of Shape Memory Alloy plates for recovery of seismic deflections in steel frames.
[41] M.Gholhaki,S.Sabouri, (2008). "Experimental study of two three-story ductile steel plate shear walls". (in Persian)
[42] S. Asgarian, B and Moradi, (2011). “Seismic response of steel braced frames with shape memory alloy braces,” J. Constr. Steel Res., vol. 67, pp. 65--74.