بررسی اثر اندرکنش قاب و دیوار برشی فولادی شیاردار

نوع مقاله : علمی - پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد سازه، دانشکده مهندسی دانشگاه فردوسی مشهد

2 دانشگاه فردوسی مشهد-دانشکده مهندسی- گروه عمران

چکیده

در این پژوهش اثر اندرکنش قاب و دیوار برشی فولادی شیاردار بررسی شده است. دیوار برشی فولادی شیاردار دارای شیارهای عمودی است و هنگامی‌که تحت بارهای جانبی قرار می‌گیرد، با تغییر شکل و تشکیل مفصل پلاستیک خمشی در انتهای شیارها، انرژی ورودی به سازه را مستهلک می‌کند. پس از مدل کردن تیر بالا سری و دیوار شیار دار در نرم افزار آباکوس، با آزمایش انجام‌ شده توسط کورتس و لیو راستی‌ آزمایی شده است. سپس اثر اندرکنش بر رفتار چرخه ای دیوار شیاردار بهبود یافته بررسی و با دیوار شیاردار معمولی مقایسه شده است. به علاوه رابطه ای برای به دست آوردن سختی در این حالت ارائه شد. هم چنین رفتار منحنی‌های چرخه‌ای، استهلاک انرژی، سختی اولیه و مقاومت مورد بحث و بررسی قرار گرفته و با یکدیگر مقایسه شده است. مشاهده شد که با افزایش سختی خمشی تیر، سختی اولیه، مقاومت و استهلاک انرژی دیوار شیاردار بیشتر می شود که تاثیر آن در سختی بیشتر است. هم چنین در قاب هایی که تیر پیرامون، سختی خمشی بالایی دارد عملکرد دیوار شیاردار بهبود یافته بهتر از دیوار شیاردار معمولی می باشد و برای تیر های با ممان اینرسی بالا استفاده از دیوار شیاردار با شیار بهبود یافته توصیه می شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

EVALUATION OF THE INTERACTION OF STEEL SLIT PANEL-FRAME

نویسندگان [English]

  • ahmad nazifi 1
  • Hashem Shariatmadar 2
1 M.Sc. Department of Civil Engineering, Ferdowsi University of Mashahd,
2 Department of Civil Engineering, Ferdowsi university of Mashhad
چکیده [English]

All buildings need a system that resists the lateral forces such as wind and earthquake. Such systems are commonly known as Lateral Force Resisting (LFR) Systems. The steel slit shear wall system is a new LFR system intended for zones with high seismicity. One of the essential constituent of the steel slit shear wall system is the slit. The shear wall has columns with slits forming links in between them. In the presence of lateral forces, these links work as a series of small flexural members in parallel and behave in double curvature reaching yield at both ends. The most notable advantages of such a system are ductile behavior and high ability to dissipate energy.
In this paper, numerical analysis using Abaqus is performed to evaluate the effect of moment inertia of beam on the behavior of steel slit shear wall. In order to verify the efficiency and accuracy of the employed finite element method, Cortes and Liu tests are conducted. After wall, twelve frame models with different beams are established. The hysteresis curves, energy dissipation capacity, initial stiffness, and ultimate strength of frames are compared and analyzed. It is observed that by increasing the moment of inertia, deformation and dissipated energy of slit steel shear wall with defined slit increase. It should be noted that, initial stiffness of steel slit shear wall with ordinary slit is higher.

کلیدواژه‌ها [English]

  • STEEL SLIT WALL
  • FEM ANALYSIS
  • FLEXURAL STIFFNESS
  • Interaction
  • Overhead Beam
[1] Muto, K. (1969). “Earthquake resistant design of 36-storied Kasumigaseki building”, In:4th World Conference on Earthquake Engineering. Santiago, Chile, pp.16-33.
[2] Muto, K., Ohmori, N., and Takahashi, T. (1973). “A study on reinforced concrete slitted shear walls for high-rise buildings”, In:5th World Conference on Earthquake Engineering. Rome, Italy.
[3] Martínez-Rueda, JE. (2002). “On the evolution of energy dissipation devices for seismic design Earthquake Spectra”, Journal of the Earthquake Engineering. Research Institute, EERI,18(2), pp.309–346.
[4] FEMA. (2000).Recommended seismic design criteria for new steel moment–frame buildings. FEMA-350. SAC Joint Venture.
[5] Hitaka, T., and Matsui, C. (2003). “Experimental study on steel shear sall with slits”, Journal of Structural Engineering ASCE, 129(5), pp.586-595.
[6] Hitaka, T., Matsui, C., and Sakai, J. (2007). “Cyclic tests on steel and concrete-filled tube frames with slit walls”, Earthquake Engineering and Structural Dynamics, 36, pp.707–727.
[7] Jacobsen, A., Hitaka, T., and Nakashima, M. (2010). “Online test of building frame with slit-wall dampers capable of condition assessment”, Journal of Constructional Steel Research, 66, pp. 1320–1329.
[8] Cortes, G., Liu, J. (2011). “Experimental evaluation of steel slit panel-frames for seismic resistance”, Journal of Constructional Steel Research, 32, pp. 181–191.
[9] Gou, L., Rong, Q., Xinbo, M., and Zhang, S. (2011). “Behavior of Steel Plate Shear Wall Connected to Frame Beams Only”, Journal of Constructional Steel Research, 11(4), pp.467-479.
[10] Rahmzadeh, A., Ghassemie, M., Park, Y., and Abolmaaili, A. (2016). “Effective of stiffeners on steel plate shear wall systems”, Steel and Composite Structures, 20(3), pp.545-569.
[11] Lu, J. Yan, L. Tang, Y. and Wang, H. (2015), "Study on Seismic Performance of a Stiffened Steel Plate Shear Wall with Slits", Shock and Vibration, 2015.
[12] Xiao, K. Zhang, Q. and Jia, B. (2016), "Cyclic behavior of prefabricated reinforced concrete frame with infill slit shear walls", Frontiers of Structural and Civil Engineering. 10(1), 63-71.
[13] Lu, J. Qiao, X. Liao, J. and Tang, Y. (2016), "Experimental Study and Numerical Simulation on Steel Plate Shear Walls with Non-uniform Spacing Slits", International Journal of Steel Structures. 16(4), 1373-1380.
[14] He, L., Togo, T., Hayashi, K., and Kurata, M. (2016). “Cyclic behavior of multirow slit shear walls made from low-yield-point steel”, Steel and Composite Structures, 20(3), pp.545-569.
[15] Jin, S., Jiulin, B., and Jinping, Q. (2017). “Seismic behavior of a buckling-restrained steel plate shear wall with inclined slots”, Journal of Constructional Steel Research, 129, pp.1-11.
[16] Gou, L., Rong, Q., Qu, .B, and Liu, J. (2017). “Testing of steel plate shear walls with composite columns and infill plates connected to beams only”, Engeenering Structures, 136, pp.165-179.
[17] Hoseinzadeh Asl M., Safarkhani, M. (2017). “Seismic behavior of steel plate shear wall with reduced boundary beam section”, Thin-Walled Structures, 116, pp.159-179.
[18] Jiang, L., Zheng, H., and Hu, Y. (2017). “Experimental seismic performance of steel- and composite steel-panel wall strengthened steel frames”, Civil and Mechanical Engineering, 17, pp.520-534.
[19] Khatami, M., Shariatmadar, H. (2017). “Experimental and analytical study of steel slit shear wall”, Steel and Composite Structures., 24(6), pp.741-751.
[20] Khatami, M., Shariatmadar, H. (2017). “Analytical study of steel slit shear wall”, Civil Engineering Sharif. [online]. Available at: http://sjce.journals.sharif.edu/article_1323.html [Accessed 21. June. 2018].
[21] Abaqus, (2014) Analysis user’s manual, Version 6.14, USA: Inc., Sassault Systemes.
[22] Hooputra, H., Gese, H., Dell, H., and Werner, H. (2004). “A comprehensive failure model for crashworthiness simulation of aluminum extrusions”, Journal of Crashworthiness, 9(5), pp.449-464.
[23] Shi, YJ., Wang, M., Wang, YQ. (2011). “Experimental and constitutive model study of structural steel under cyclic loading”, Constructional Steel Research, 67(8), pp.1185-1197.
[24] Krawinkler, H. (2009). “Loading histories for cyclic Tests in support of performance assesment of structural components”, Department of civil and Environ. Engineering, Stanford University, Stanford, CA.
[25] ATC-24, (1992). “Guidelines for cyclic seismic testing of components of steel structures for buildings”, Report No. ATC-24, Applied Technology Council, Redwood City, CA.