مقایسه روش های پول آف، پوش اوت و منشور شکافت برای تعیین چسبندگی بتن خودتراکم الیافی به عنوان لایه تعمیری بر بستر بتنی.

نوع مقاله : علمی - پژوهشی

نویسندگان

1 دانشیار، دانشگاه گیلان، رشت، ایران

2 مربی دانشگاه آزاد تاکستان

چکیده

با توجه به امکان استفاده از بتن خودتراکم - به علت عدم نیاز این نوع بتن به تراکم و جاری شدن تحت وزن خود - در شرایطی که تراکم به سختی قابل انجام است، این نوع بتن گزینه بسیار مناسبی برای استفاده به عنوان لایه تعمیری در سازه های بتنی و ترمیم و مرمت آنها است. در این میان کیفیت چسبندگی این لایه به بتن بستر از مهمترین عوامل دوام و عملکرد مناسب عملیات تعمیر انجام شده می باشد. بر این اساس در این مطالعه به بررسی چند عامل تاثیر گذار بر چسبندگی بین دولایه یعنی حجم خمیره، نسبت آب به مصالح سیمانی و مقدار الیاف و تاثیر آنها اولا بر ویژگی های رئولوژیکی بتن خود تراکم تعمیری و دوم بر ویژگی های مکانیکی این بتن شامل مقاومت فشاری، مقاومت کششی، مدول الاستیسیته و جمع شدگی آن و سوم بر کیفیت چسبندگی بین این بتن و بتن بستر پرداخته شده است. به منظور تعیین چسبندگی بین دو لایه بتنی از روش های پول- آف، پوش- اوت و منشور شکافت بهره گرفته شده است. نتایج نشان دادند که به دلیل تاثیر زیاد مقدار جمع شدگی بر چسبندگی دو لایه، عوامل کاهش جمع شدگی یعنی کاهش حجم خمیره، کاهش نسبت آب به مصالح سیمانی و وجود الیاف، منجر به افزایش چسبندگی می شوند. در این ارتباط مقدار دقیق تاثیر هر یک از این پارامترها بر مقدار چسبندگی دو لایه و نیز مقدار بهینه هر یک تعیین گردید. همچنین ارتباط بین روش های مختلف تعیین چسبندگی دو لایه و مقدار کارامدی و دقت هر یک به دست آمد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Comparison of pull-off, push-out and splitting prism tests for assessment of bonding between fiber-reinforced self-compacting concrete as a repair layer and concrete substrate.

نویسندگان [English]

  • Ali Sademomtazi 1
  • Oveys Ghodousian 2
1 Associate professor, Civil Engineering Dept, University of Guilan, Rasht, Iran
2 Instructor of Azad University of Qazvin
چکیده [English]

Considering using self-compacting concrete – because of no need to vibration and flow ability of this kind of concrete under its weight – under challenging situation for consolidation, it would be a very suitable option for using as repair layer in repairing and retrofitting of concrete structures. In this issue, quality of bonding between the repair layer and concrete substrate is one of the most important factors in durability and suitable performance of repairing works. On this base, in this research, some effective factors on bonding between two layers i.e. volume paste, water to cementitious materials and fiber dosages and their effects on rheological properties of repair self-compacting concrete firstly, on mechanical properties of it including compressive strength, tensile strength, modulus of elasticity and shrinkage secondly and on bonding quality between the self-compacting repair layer and concrete substrate finally have been assessed. For assessment of bonding between two concrete layers, three methods including pull-off, push-out and splitting prism have been used. The results show that because of highly effects of shrinkage on bonding, the factors that reduce shrinkage, i.e. volume paste, water to cementitious materials and fiber dosages will increase the bonding of the two concrete layers. In this issue, the exact effect of each of these parameters on bonding between the two concrete layers and the optimum value of them have been assessed. Also, the correlation between all three methods of assessment of bonding between self-compacting concrete as a repair layer and concrete substrate and preciseness of the methods have been found.

کلیدواژه‌ها [English]

  • pull-off
  • push-out
  • splitting prism
  • bonding
  • Self-Compacting Concrete
[1 ] Bartos, P. J. M. and Grauers, M., “Self-compacting concrete”, Concrete, Vo. 33, No. 4, pp. 9-14, 1999.
[2 ] Ramchandani, V. S., “Superplasticizers in concrete”, Canadian Building Digest, NRC. CBD-203, pp. 1-7, 1999.
[3 ] Danish Technological Institute, Clans Pade, Lars Nyholm Thrane, Claus V. Nielsen, “Guidelines for mix design of
SCC”, May 2008.
[4 ] M. A. Issa, R.Z. Alrousan, “High performance bonded concrete overlays”, ICCBT, 2008
[5 ] Dawei Zhang, Tamon Ueda, Hitoshi Furuuchi, “Avereage crack spacing of overlay-strengthened RC beams”, Journal of
materials in civil engineering, ASCE, October 2011
[6 ] N. Banthia, R. Gupta, S. Mindess, “Development of fiber reinforced concrete repair materials”, Can. J. Civ. Eng., 33,
2006, 126-133
[7 ] W.Hansen, J.A. Almudaiheem, “Ultimate drying shrinkage of concrete – influence of major parameters”, ACI Mater. J.,
84, 1987, 217-223
[8 ] O. Challal, B. Benmokrane, G. Ballavy, “Drying shrinkage strains: experimental versus codes" , ACI Mater. J., 89,
1992, 263-266
[9 ] ACI committee 209, “Pridiction of creep, Shrinkage and temperature effects in concrete structures, designing for creep
and shrinkage in concrete structures”, SP-76, American concrete institute, Detroit, 1982, 193-300
[ 1 1] Euro-Internatioinale du beton, “Model code for concrete structures”, Paris, 1978
[ 1 1] B. Bissonnette, P. Pierre, M. Pigeon, “ Influence of key parameters on drying shrinkage of cementitious materials”,
cement and concrete research, 29, 1999, 1655-1662
[ 1 2] V. Baroghel-Bouny, M. Mainguy, T. Lassabatere, O. Coussy, “Characterization and identification of equilibrium and
transfer moisture properties for ordinary and high-performance cementitious materials”, Cement and concrete research, 29,
1999, 1225-1238
[ 1 3] John E. Bolander Jr., Stefano Berton, “Simulation of shrinkage induced cracking in cement composite overlays”,
Cement and concrete research, 26, 2004, 861-871
[ 1 4] H. Beushausen, M.G. Alexander, “Failure mechanisms and tensile relaxation of bonded concrete overlays subjected to
differential shrinkage”, Cement and concrete research, 36, 2006, 1908-1914
[ 1 5] E. Roziere, S. Granger, Ph. Turcry, A. Loukili, “Influence of paste volume on shrinkage cracking and fracture
properties of self-compacting concrete”, Cement and concrete research, 29, 2007, 626-636
[ 1 6] N. Banthia, R. Gupta, S. Mindess, “Development of fiber reinforced concrete repair materials”, Can. J. Civ. Eng., 33,
2006, 126-133
[ 1 7] Emmons, P.H., Vaysburd, A.M. and Czarnecki, L., "Durability of repair materials: Current practice and challenges ",
in Brittle Matrix Composites 6, Proceedings of an International Symposium, Warsaw, pp. 263–274, 2000.
[ 1 8] Bernard, O., Comportement à long terme des éléments de structure formés de bétons d’âges différents, PhD Thesis No.
2283, Ecole Polythechnique Fédérale de Lausanne, Switzerland, 189 pp., 2000.
[ 1 9] Bigwood, D.A. and Grocombe, A.D., Elastic analysis and engineering design formulae for bonded joints, International
Journal of Adhesion and Adhesive, 9, 229–242, 1989.
[ 2 1] Fowler, D.W., Wheat, D.L., Choi, D.U. and Zalatimo, J., Stresses in PC overlays due to thermal changes, in Industrial
Floors’03, Proceedings of an International colloquium, Esslingen, January, P. Seidler (Ed.), pp. 29–36, 2003.
[ 2 1] Naciri, T., Ehrlacher, A. and Chabot, A., Interlaminar stress analysis with a new multiparticle modelisation of
multilayered materials (M4), Composites Sciences and Technology, 58(3), 337–343, 1998.
[ 2 2] Caron, J.F., Diaz Diaz, A., Carreira, R.P., Chabot, A. and Ehrlacher, A., Multi-particle modelling for prediction of
delamination in multi-layered materials, Composites Sciences and Technology, 66(6), 755–765, 2006.
[ 2 3] Chausson, H. and Granju J.-L., Optimized design of fiber reinforcement thin bonded overlays, in Brittle Matrix
Composites 5, Proceedings of an International Symposium, Warsaw, October, Woodhead Publishing, pp. 133–142, 1997.
[ 2 4] Silfwerbrand, J., Shear Bond Strength in repaired concrete structures, Materials and Structures, 36(260), 419–424,
2003.
[ 2 5] Sabathier, V., Rechargements minces adhérents à base cimentaire renforcés de fibres métalliques. Conditions de leur
durabilité, modélisation et calcul, PhD Thesis, Université Toulouse III, 190 pp., 2004.
[ 2 6] Julio, E.N.B.S, Branco, F.A.B. and Silva, V.D., Concrete-to-concrete bond strength. Influence of the roughness of
substrate surface, Construction and Building Materials, 18(9), 675–681,2004.
[ 2 7] Granju, J.-L., Thin bonded overlays: About the role of fiber reinforcement on the limitation of their debonding,
Advanced Cement Based Materials, 4(1), 21–27, 1997.
[ 2 8] Turatsinze, A., Farhat, H. and Granju, J-L., Durability of metal-fibre reinforced concrete repairs: Drying shrinkage
effects, in Proceedings of an International Symposium, Warsaw, October, Woodhead Publishing , pp. 296–305, 2000.
[ 2 9] Granju, J.L., Sabathier, V., Turatsinze, A. and Toumi, A., Interface between an old concrete and a bonded overlay:
Debonding mechanism, Interface Science Journal, 12(4), 381–388, 2004.
[ 3 1] Mailvaganam, N., Springfield, J., Repette, W. and Taylor, D., Curling of concrete slabs on grade, Construction
Technology Update, 44, 1–6, 2000.
[ 3 1] Suprenant, B.A. and Malisch, R.W., Repairing curled slabs, Concrete Construction, 9, 58–65, 1999.
[ 3 2] Suprenant, B.A., A look at the curling mechanism and the effect of moisture and shrinkage gradients on the amount of
curling, Concrete International, 24(3), 56–61, 2002.
[ 3 3] Tran, Q.T., Toumi, A. and Turatsinze, A., Thin bonded cement-based overlays: Numerical analysis of factors
influencing their debonding under fatigue loading, Materials and Structures, 41(5), 951–967, 2008.
[ 3 4] Lupien, C., Chanvillard, G. Aïtcin, P-C. and Gagné, R., Réhabilitation d’une chaussée par resurfaçage mince adhérent
en béton renforcé de fibres d’acier, in Proceedings of AIPCR, Comité C-7, Montréal, Canada, pp. 246–250, 1995.
[ 3 5] Lupien, C., Chanvillard, G. Aïtcin, P-C. and Gagné R., Réhabilitation d’une chaussée en béton avec une chape mince
en béton renforcé de fibres d’acier, in Les techniques de transport au service de la qualité de vie,Exposé des
communications du 25◦ congrès annuel de l’AQTR, Montréal, April, pp. 108-122, 1990.
[ 3 6] Chanvillard, G., Aitcin, P.C. and Lupien, C., Field evaluation of steel-fibre reinforced concrete overlays with bonding
mechanism, in Transportation Research Record 1226, TRB, Washington, pp. 48–56, 1990.
[ 3 7] Chanvillard, G. and Aitcin, P.C., Thin bonded overlays of fiber-reinforced concrete as a method of rehabilitation of
concrete roads, Canadian Journal of Civil Engineering, 17(4), 521–527, 1990.
[ 3 8] Farhat, H., Durabilité des réparations en béton de fibres: Effets du retrait et de la fatique, PhD Thesis, Université Paul
Sabatier, Toulouse, France, 178 pp., 1999 [in French].
[ 3 9] Granju, J.-L. and Chausson, H., Serviceability of fiber reinforced thin overlays relation between cracking and
debonding, in ConChem, Proceedings of an International exhibition & Conference, Brussels, November, Verlag für
chemische industrie, pp. 133–142, 1995.
[ 4 1] Granju, J.-L. and Chausson, H., Fiber reinforced thin bonded overlays: The mechanism of their debonding in relation
with their cracking, in Concrete repair, rehabilitation and protection, in Proceedings of an International Congress, Dundee,
June, E. & FN. Spon, pp. 583–590, 1996.
[ 4 1] Chausson, H., Durabilité des rechargements minces en béton: Relation entre leur décollement, leur fissuration et leur
renforcement par des fibres, PhD Thesis, Université Paul Sabatier, Toulouse, France, 198 pp., 1997 [in French].
[ 4 2] Turatsinze, A., Granju, J.L., Sabathier, V. and Farhat, H., Durability of bonded cement-based overlays: effect of metal
fibre reinforcement, Materials and Structures, 38(277), 321–327, 2005.
[ 4 3] Zhang, J., Stang, H. and Li, V.C., Crack bridging model for fibre reinforced concrete under fatigue tension,
International Journal of Fatigue, 23(8), 655–670, 2001.
[ 4 4] Rossi, P. (sous la direction de), Le développement industriel des bétons de fibres métalliques, conclusions et
reconclusions, Presse de l’école nationale des Ponts et Chaussées, 2002.
[45] Delatte, N.J., Williamson, M.S., and Fowler, D.W., Bond strength development of high-earlystrength bonded concrete
overlays, ACI Materials Journal, 97-M27, 201–207, March–April
2000.
[46] Pigeon, M. and Saucier, F., Durability of repaired concrete structures. In Proceedings, International Symposium on
Advances in Concrete Technology, Athens, 11–12 May, pp. 741–773, 1992.
[47] Silfwerbrand, J., Improving concrete bond in repaired bridge decks, Concrete International, 12(9), 61–66, September
1990.
[48] Naderi, Mahmood, Ghodousian, Oveys, “Adhesion of Self-Compacting Overlays Applied to Different Concrete
Substrates and Its Prediction by Fuzzy Logic”, The Journal of Adhesion Volume 88, Issue 10, 2012.
[49] Delatte, N.J., Wade, D.M., and Fowler, D.W., Laboratory and field testing of concrete bond development for expedited
bonded concrete overlays, ACI Materials Journal, 97-M33, 272– 280, May–June 2000.
[51] Saucier, F. and Pigeon, M., Durability of new-to-old concrete bondings. In Proceedings of ACI International
Conference on Evaluation and Rehabilitation of Concrete Structures and Innovations in Design, Hong Kong, December
(ACI SP-128), pp. 689–705, 1991.
[51] Silfwerbrand, J. and Paulsson, J., The Swedish experience: Better bonding of bridge deck overlays, Concrete
International, 20(10), 56–61, 1998.
[ 5 2] Momayez, A. Ehsani, M.R. Ramezanianpour, A.A. Rajaie. H, “Comparison of methods for evaluating bond strength
between concrete substrate and repair materials” Cement and Concrete Research Volume 35, Issue 4, April 2005, Pages
748–757