نمود تحلیلی پالس‌های سرعت بر رفتار لرزه‌ای سیستم میان مرتبه ترکیبی قاب خمشی فولادی و پانل‌های مهاربندی‌ واگرا

نوع مقاله : علمی - پژوهشی

نویسندگان

1 MSc Graduated, Structural Engineering

2 هیات علمی (استادیار)، دانشکده مهندسی ، گروه عمران، دانشگاه خوارزمی، تهران

چکیده

سازه‌های ترکیبی قاب خمشی فولادی و پانل‌های مهاربندی ‌شده به دلیل شکل‌پذیری مناسب در کنار سختی بالا جهت مقابله با نیروهای بزرگ دینامیکی ناشی از زلزله‌های شدید، سیستمی مناسب برای سازه‌های میان مرتبه می‌باشند. در این مطالعه، خصوصیات رفتار لرزه‌ای دو سازه 10 طبقه با سیستم ترکیبی قاب‌ خمشی-پانل‌های مهاربندی واگرا و قاب خمشی-پانل‌های مهاربندی واگرای زیپ‌دار تحت اثر زمین لرزه‌های قدرتمند حوزه نزدیک حاوی پالس سرعت مورد بررسی قرار گرفته است. اندازه و تغییرات پارامترهای پاسخ لرزه‌ای مدل‌های مطالعاتی بر پایه انجام تحلیل‌های غیر خطی تاریخچه زمانی محاسبه گردیده است. مدل‌های مطالعاتی مطابق با ضوابط طرح لرزه‌ای ویرایش چهارم آیین‌نامه ۲۸۰۰ و مباحث ششم و دهم مقررات ملی ساختمان طراحی ‌شده‌اند. بر پایه نتایج این پژوهش؛ دانسته شده که وجود پالس‌های بزرگ و پیوسته در تاریخچه زمانی زلزله‌های نیرومند، پارامترهای پاسخ سازه را به ‌شدت تحت تأثیر قرار می‌دهد. ساختار مطالعاتی این پژوهش دربرگیرنده روند تحلیلی مربوط به نمودارهای پوش بیشینه دریفت، شتاب و سرعت طبقات سازه‌های مطالعاتی و همچنین تاریخچه زمانی دریفت طبقات و نیروی محوری ستون‌ها است. بررسی نتایج نشان می‌دهد که علاوه بر وجود پیچیدگی توصیفی در پاسخ‌ها، نیازهای لرزه‌ای تحت رکوردهای حوزه نزدیک گسل، دارای نمود به مراتب بزرگ‌تری نسبت به رکوردهای دور از گسل می‌باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Analytical Aspects of Velocity Pulses on Seismic Behaviour of Mid-Rise Compound Skeleton of Steel Moment Frame and Eccentrically Braced Panels

نویسندگان [English]

  • Parsa Khazaei Rad 1
  • Ali Mortazavi 1
  • Afshin Meshkat-Dini 2
1 MSc Graduated, Structural Engineering
2 Professor of Structural-Earthquake Engineering - Kharazmi University - Tehran - IRAN
چکیده [English]

Steel moment frame and bracing panels compound structures are suitable systems for medium-height resistant skeletons due to their desirable ductility along with high rigidity when facing large dynamic forces caused by earthquakes. In this research, the seismic behavior of two 10-story buildings with compound systems of moment frame/eccentrically braced frames as well as moment frame/eccentrically braced frame with zipper elements are evaluated. The evaluation and changes of the seismic response parameters of the studied models are based on performing nonlinear time history analyses. The studied models are designed according to the fourth edition of seismic design provisions in Code 2800, plus the 6th and 10th issues of the Iranian National Building Regulations. Following the results of this research, it has been recognized that the existence of large coherent pulses in the time history of powerful earthquakes affects the response parameters of the building to a great extent. The results of this research includes the analytical process in the graphs related to maximum push of the drift, floors acceleration and velocity of the studied structural models and also the time history of story’s drift and axial force of the columns. The results show that seismic responses and demands under near-field records have a bigger appearance than the corresponding effects obtained exposed to far-field records.

کلیدواژه‌ها [English]

  • Dual Steel Structure
  • Eccentric Bracing
  • Zipper Columns
  • Seismic response
  • Near Field Record
  • Velocity Pulse
  • Time History Response
[1] Housner, G.W. and Trifunac, M.D.; (1967). Analysis of accelerograms Parkfield earthquake. Bulletin of the Seismological Society of America, 57(6), 1193-1220.
[2] Somerville, P.G., Smith, N.F., Graves, R.W. and Abrahamson, N.A.; (1997). Modification of empirical strong ground motion attenuation relations to include the amplitude and duration effects of rupture directivity. Seismological Research Letters, 68(1), 199-222.
[3] Lee, K. and Foutch, D.A.; (2006). Seismic evaluation of steel moment frame buildings designed using different R-values. Journal of Structural Engineering, 132(9), 1461-1472.
[4] Krawinkler, H. and Gupta, A.; (1998). Modeling issues in evaluating nonlinear response for steel moment frame structures. The 11th European Conference on Earthquake Engineering. Paris.
[5] Roeder, C.W. and Popov, E.P.; (1978). Eccentrically braced steel frames for earthquakes. Journal of the Structural Division, 104(3), 391-412.
[6] Hjelmstad, K.D. and Popov, E.P.; (1984). Characteristics of eccentrically braced frames. Journal of Structural Engineering, 110(2), 340-353.
[7] Malley, J.O. and Popov, E.P.; (1984). Shear links in eccentrically braced frames. Journal of Structural Engineering, 110(9), 2275-2295.
[8] Kasai, K. and Popov, E.P.; (1986). General behavior of WF steel shear link beams. Journal of Structural Engineering, 112(2), 362-382.
[9] Popov, E.P. and Engelhardt, M.D.; (1988). Seismic eccentrically braced frames. Journal of Constructional Steel Research, 10, 321-354.
[10] Foutch, D.A.; (1989). Seismic behavior of eccentrically braced steel building. Journal of Structural Engineering, 115(8), 1857-1876.
[11] Farahani, S., Amin Mohebkhah, A.; (2016). Overstrength of displacement-based designed eccentrically braced steel frames. Journal of Structural and Construction Engineering (JSCE), 2(4), 48-61.
[12] Rossi, P.P.; (2007). A design procedure for tied braced frames. Earthquake Engineering and Structural Dynamics, 36(14), 2227-2248.
[13] Rossi, P.P. and Lombardo, A.; (2007). Influence of the link overstrength factor on the seismic behaviour of eccentrically braced frames. Journal of Constructional Steel Research, 63(11), 1529-1545.
[14] Bosco, M. and Rossi, P.P.; (2009). Seismic behaviour of eccentrically braced frames. Engineering Structures, 31(3), 664-674.
[15] Yang, C.S., Leon, R.T. and DesRoches, R.; (2008). Design and behavior of zipper-braced frames. Engineering Structures, 30(4), 1092-1100.
[16] Mollaioli, F., Bruno, S., Decanini, L.D. and Panza, G.F.; (2006). Characterization of the dynamic response of structures to damaging pulse-type near-fault ground motions. Meccanica, 41(1), 23-46.
[17] Moehle, J.P.; (2006). Seismic analysis, design, and review for tall buildings. The Structural Design of Tall and Special Buildings, 15(5), 495-513.
[18] Somerville, P.G.; (2005). Engineering characterization of near fault ground motions. The NZSEE 2005 Conference, Auckland.
[19] Sehhati, R., Rodriguez-Marek, A., ElGawady, M. and Cofer, W.F.; (2011). Effects of near-fault ground motions and equivalent pulses on multi-story structures. Engineering Structures, 33(3), 767-779.
[20] Tehranizadeh, M. and Meshkat-Dini, A.; (2007). Non-linear response of high rise buildings to pulse type strong ground motions. The 2007 Conference of the Australian Earthquake Engineering Society, Wollongong, Australia.
[21] Trifunac, M.D. and Todorovska, M.I.; (2013). A note on the power of strong ground motion during the January 17, 1994 earthquake in Northridge, California. Soil Dynamics and Earthquake Engineering, 52, 13-26.
[22] Kim, B., Hashash, Y.M., Rathje, E.M., Stewart, J.P., Somerville, P.G. and Campbell, K.W.; (2016). Subsurface shear wave velocity characterization using P-wave seismograms in central and eastern north America. Earthquake Spectra, 32(1), 143-169.
[23] PEER Ground Motion Database – Pacific Earthquake Engineering Research Center. [Online] Available at: http://peer.berkeley.edu/
[24] National Building Regulations Office, Ministry of Roads and Urban Development; (2014). "Iranian National Building Code: Design Loads for Buildings- Divisio 6". 3rd Edition. Tehran: Tosseh Iran Publisher.
[25] National Building Regulations Office, Ministry of Roads and Urban Development; (2014). "Iranian National Building Code: Design and Construction of Steel Structures – Division 10". 4th Edition. Tehran: Tosseh Iran Publisher.
[26] Permanent Committee for Revising the Iranian Code of Practice for Seismic Resistant Design of Buildings, (2014). "Standard No. 2800. Iranian Code of Practice for Seismic Resistant Design of Buildings". 4th Edition. Tehran: Road, Housing and Urban Development Research Center.
[27] Computers and Structures, Incorporation. (1976-2010). SAP2000. Berkeley, CA. Retrieved from www.csiberkeley.com
[28] Agency, Federal Emergency Management. (2000). Prestandard and Commentary for the Seismic Rehabilitation of Buildings: Fema 356: Createspace Independent Publication.
[29] Kalkan, E. and Kunnath, S.K.; (2006). Effects of fling step and forward directivity on seismic response of buildings. Earthquake Spectra, 22(2), 367-390.