ارزیابی رفتار لرزه ای پل های بتنی عرشه پیوسته با بیه های مختلف با استفاده از منحنی شکنندگی

نوع مقاله : علمی - پژوهشی

نویسندگان

1 استادیار، دانشکده مهندسی عمران، آب و محیط زیست، دانشگاه شهید بهشتی، تهران، ایران

2 دانشجوی دکتری مهندسی زلزله، دانشکده مهندسی عمران، آب و محیط زیست، دانشگاه شهید بهشتی، تهران، ایران

3 دانشجوی کارشناسی ارشد مهندسی زلزله، دانشکده مهندسی عمران، آب و محیط زیست، دانشگاه شهید بهشتی، تهران، ایران

چکیده

پل­ها از جمله ارکان اصلی خطوط حمل و نقل شهری و بین شهری می­باشند. بنابراین باید طوری طراحی شوند که بعد از وقوع زلزله قابل استفاده بوده و منجر به قطع ارتباط سیستم حمل و نقل عمومی نشوند. خسارت وارد بر پل­ها در زلزله­های اخیر اهمیت ارزیابی لرزه­ای پل و  تعیین سطوح خرابی آن­ها تحت بارهای لرزه­ای را آشکار نمود. از جمله عواملی که آسیب­ پذیری پل­ها در برابر زلزله را افزایش می­دهد، زاویه بیه پل می­باشد. پل­های دارای بیه معمولا در تقاطع بزرگراه­ها و یا جاده­هایی که به دلیل شرایط جغرافیایی امکان ساخت پل­های معمولی وجود ندارد، ساخته می­شوند. هدف این مقاله ارزیابی لرزه­ای پل­های بتنی عرشه پیوسته دارای زاویه بیه با استفاده از معیار خرابی و  تعیین احتمال خرابی پایه های پل به کمک منحنی های شکنندگی می­باشد. بدین منظور سه نوع پل بتنی عرشه پیوسته دو، سه و چهار دهانه با زاویه­های بیه صفر،  10، 20 و 30 درجه در نرم افزار اجزای محدود مدلسازی می­شوند. سپس پاسخ لرزه­ای هریک از پل­ها تحت 10 رکورد زلزله با انجام تحلیل دینامیکی غیرخطی فزاینده (IDA) به­دست می­آید. به منظور تعیین احتمال خرابی پل­ها از معیار خرابی ارائه شده توسط مکی و استوجانویچ استفاده شده و حدود خرابی پایه­های پل­ها در چهار حالت خرابی کم، متوسط، زیاد و کامل  تعیین می­گردد. سپس منحنی شکنندگی پل­ها در هر یک از حالت­های خرابی، به دست آمده و احتمال خرابی پایه­ها در بیه­های مختلف و دهانه­های مختلف مقایسه می­گردد. نتایج حاصل نشان می­دهد که افزایش بیه موجب افزایش احتمال خرابی پل به ویژه در حالت­های خرابی زیاد و کامل می­گردد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Study on seismic behaviour of integral concrete bridges with different skew angles through fragility curves

نویسندگان [English]

  • Mahmoud Reza ُُShiravand 1
  • Shima Mahboubi 2
  • Pedram Omidian 3
1 Assistant Professor, Department of Civil Engineering, Shahid Beheshti University, Tehran, Iran
2 PhD student, Department of Civil Engineering, Shahid Beheshti University, Tehran, Iran
3 MSc Student, Department of Civil Engineering, Shahid Beheshti University, Tehran, Iran
چکیده [English]

Bridges are key elements in urban transportation system and should be designed to sustain earthquake induced damages to be utilized after earthquake. Extensive damages during last earthquakes highlighted the importance of seismic assessment and damage estimation of bridges. Skewness is one of the primary parameters effects on seismic behavior of bridges. Skew bridges are defined as bridges with skew angle piers and abutments. In these bridges, the piers have some degrees of skewness due to construction restrictions, such as those caused by crossing a waterway, railway line or road. This paper aims to investigate seismic behavior of skew concrete bridges using damage criteria and estimate probability of piers damage with fragility curves. To this end, three types of concrete bridges with two, three and four spans and varying skew angles of 00 ,100, 200 and 300 are modeled with finite element software. Seismic responses of bridge piers under 10 earthquake ground motion records are calculated using incremental dynamic analysis. Following, damage criteria proposed by Mackie and Stojadinovic are used to define damage limits of bridge piers in four damage states of slight, moderate, extensive and complete and bridge fragility curves are developed. The results show that increasing skew angles increases the probability of damage occurrence, particularly in extensive and complete damage states.

کلیدواژه‌ها [English]

  • Concrete Bridge
  • Skew angle
  • IDA
  • Damage Criteria
  • Fragility curves
[1] Maragakis, E.A. and Jennings, P.C. (1987). Analytical models for the rigid body motions of skew bridges.  Earthquake Engineering and Structural Dynamics, 15(8), 923-944.
[2] Wakefield, R., Nazmy, A., and Billington, D. (1991). Analysis of seismic failure in skew RC bridge. Journal of    Structural Engineering (ASCE). 117(3), 972–86.
[3] Meng, J.Y, and Lui, E.M. (2000). Seismic analysis and assessment of a skew highway bridge. Engineering Structure, 22(11), 1433-52.
[4] Mennasa, C., K.Mabsout, K. and Frederick,G. (2007). Influence of skew angle on Reinforced Concrete Slab Bridge. Journal of Bridge Engineering ( ASCE),12, 205-214.
[5] Dimitrakopoulos, E. G. (2011). Seismic response analysis of skew bridges with pounding deck–abutment joints. Engineering Structure, 33(3), 813–826.
[6] Kaviani, P., Zareian, F., and Taciroglu, E. (2012). Seismic behaviour of reinforced concrete bridges with skew-Angled Seat-Type Abutment. Engineering Structures, 45, 137- 150.
[7]  NCHRP, Performance based seismic bridge design,(2013). A synthesis of Highway practice. National cooperative highway research program. Transportation Research Port, Washington, D.C.
[8] Singhal , A. and Kiremidjian, A. S.(2007)  .A Method for Earthquake Motion-Damage Relationships with Application to Reinforced Concrete Frames Report  NCEER-97-0008. State University of  New York at Buffalo: National Center for Earthquake Engineering  Research, Buffalo, NewYork.
[9] Erberik, M. A. and Elnashai, A. S. (2003). Seismic Vulnerability of Flat-slab Structures. Mid America Earthquake Center. Department Civil and Environmental  Engineering, University of  Illinois at Urbana-Champaign, Urbana, IL.
[10] Jeong, S., and  Elnashai, A. (2007). Probabilistic Fragility Analysis Parameterized by Fundamental Response Quantities. Engineering Structures, 29, 1238-1251.
[11] HAZUS-MH MR1.(2003). Multi-hazard Loss Estimation Methodology Earthquake Model Technical Manual. National Institute of Building Science.
[12] Caltrans.(2012). Feasibility Studies for Improving Caltrans Bridge Fragility Relationships Final Report California Department of Transportation, Report No. CA12-1775.
[13] Nielson, B., and DesRoches, R. (2007). Seismic Fragility Methodology for Highway Bridges Using a Component Level Approach. Earthquake Engineering and Structural Dynamics, 36 (6), 823-839.
[14] Padgett, J. E., and  DesRoches, R. (2008). Methodology for the Development of Fragility Curves for Retrofitted Bridges. Earthquake Engineering and Structural Dynamics, 37 (8), 1157-1174.
[15] Roblee, C., Sahs, S., Mahan, M., Yashinsky, M., Setberg, H. and Maintenance, C.(2011). Caltrans-Aligned Limit States Discussion. (J. Dukes, K. Ramanathan, R. DesRoches, & J. Padgett, Interviewers).
[16] Basoz, N., and Mander, J. B.(1999). Enhancement of the Lifeline Transportation Module in HAZUS, Report No. Draft N0.7, National Institute of Building Sciences, Washington, D.C.
[17] Banerjee, S.,and  Shinozuka, M. (2007). Nonlinear Static Procedure for Seismic Vulnerability Assessment of Bridges. Computer-Aided Civil and Infrastructure Engineering, 22, 293-305.
[18] Fajfar, P. (2000). A Nonlinear Analysis Method for Performance Based Seismic Design. Earthquake Spectra, 573–592.
[19] Kim, S. H., and  Shinozuka, M. (2004). Development of fragility curves of bridges retrofitted by column jacketing, Probabilistic Engineering Mechanics, 19, 105-112.
[20] Mackie, K., Wong, J. and Stojadinovic , B.(2008).  Integrated Probabilistic Performance-Based Evaluation of Benchmark Reinforced Concrete Bridges, Pacific Earthquake Engineering Research Center, University of Berkley California.
[21]Code 463,(2008).Road and Railway Bridges Seismic Resistant Design Code. Ministry of Roads and Transportation
[22]Code139,(2000). Standard Loads for Bridge, Office of Deputy for Strategic Supervision Bureau of Technical Execution System Deputy of Training; Research and Information Technology.
[23]Code 523, (2010). Guideline for Design and Practice of Base Isolation Systems in Buildings, Office of Deputy for Strategic Supervision Bureau of Technical Execution System.
[24]Mander, J.B., Priestley, M.J.N., and Park R. (1984). Theoretical Stress-Strain Model for Confined Concrete. Journal of Structural Engineering. ASCE, 114(3), 1804-1826.
[25] FEMA.-350, (2000). Recommended seismic design criteria for new steel moment-frame buildings, Prepared by SAC Joint Venture for Federal Emergency Management Agency, Washington, D.C.
[26] FEMA-351,(2000). Recommended Seismic Evaluation and Upgrade Criteria for Existing Welded Steel Moment-Frame Buildings, prepared by the SAC Joint Venture for Federal  Emergency Management Agency, Washington D.C.
[27]Vamvatiskos, D. and Cornell, C.A.(2002). Incremental Dynamic Analysis. Earthquake Engineering and Structural dynamics, 31, 491-514.
[28] Kwon, O. S., Elnashai, A. S. (2010). Fragility analysis of a highway over-crossing bridge with consideration of soil-structure interactions. Structure and Infrastructure Engineering, 6(1-2), 159-178.