پیشنهاد معادلات جدید با بکارگیری آزمون نوین "انتقال اصطکاک" جهت تخمین مقاومت فشاری ملات‌ها و سنگ‌ها

نوع مقاله : علمی - پژوهشی

نویسندگان

1 استاد، دانشکده فنی مهندسی، دانشگاه بین المللی امام خمینی (ره)، قزوین، ایران

2 دکتری، دانشکده فنی و مهندسی، دانشگاه بین المللی امام خمینی (ره)، قزوین، ایران

3 ارشد، دانشکده فنی و مهندسی، دانشگاه بین المللی امام خمینی (ره)، قزوین، ایران

چکیده

اکثر روش‌های موجود جهت تخمین مقاومت مصالح، یا به صورت مخرب بوده یا دارای تجهیزات گران قیمت و وارداتی هستند. برخی از آن‌ها نیز به طور غیر مستقیم مقاومت مصالح را اندازه‌گیری می‌نمایند. لذا آزمونی که دارای تجهیزات ارزان، ساده و در دسترس، دارای دقت بالا، قابل اعمال در تمامی شرایط (خشک، مرطوب، زیر آب و تحت هر دمایی)، دارای خرابی سطحی و جزئی و قابل انجام هم در آزمایشگاه و هم در محل پروژه باشد، مورد نیاز می‌باشد. لذا در این مقاله با استفاده از روشی ساده، درجا و با تجهیزات ارزان و در دسترس به نام آزمون "انتقال اصطکاک" اقدام به اندازه‌گیری مقاومت فشاری و کششی ملات‌ها و سنگ‌های مختلف شده است. در آزمون انتقال اصطکاک ابتدا یک مغزه جزئی به قطر 50 و ارتفاع 25 میلی‌متر روی سطح نمونه ایجاد نموده و سپس دستگاه انتقال اصطکاک روی مغزه تثبیت شده و با استفاده از یک ترکمتر معمولی، به مغزه لنگر پیچشی اعمال می‌گردد تا دچار شکست گردد. سپس با تعیین مقاومت سطحی حاصل از آزمون انتقال اصطکاک و مقایسه نتایج به دست آمده با آزمون‌های استاندارد، معادلات به دست آمده جهت تبدیل نتایج حاصل از آزمون "انتقال اصطکاک" به مقاومت فشاری تک محوری مصالح ارائه شده است. آزمون‌ها بر روی هفت نوع سنگ مختلف و ملات‌های سیمانی که در کارهای عادی تعمیراتی بکار می‌روند انجام پذیرفت. نتایج حاصله بیانگر دقت بالای آزمون انتقال اصطکاک در اندازه‌گیری مقاومت سنگ‌ها و ملات‌ها می‌باشد. ضریب تعیین بین نتایج آزمون انتقال اصطکاک با مقاومت فشاری تک محوری سنگ‌ها برابر 2/93 درصد بدست آمد که با توجه به منحنی کالیبراسیون می‌توان با بکارگیری آزمون انتقال اصطکاک، مقاومت فشاری سنگ‌ها را با استفاده از معادله y=1.67x+90.8 اندازه‌گیری نمود. همچنین با استفاده از آزمون انتقال اصطکاک، مقاومت فشاری و کششی ملات‌ها را نیز می‌توان با دقت حدود 94 درصد اندازه‌گیری نمود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Proposing New Equations Using Friction Transfer Novel Method to Estimate the Compressive Strength of Different Stones and mortars

نویسندگان [English]

  • Mahmood Naderi 1
  • Ali Saberi Vaezaneh 2
  • Abolfazl Rashvand Aveh 3
1 Professor, Department of Civil Engineering, Imam Khomeini International University, Qazvin, Iran
2 Ph.D , Department of Civil Engineering, Imam Khomeini International University, Qazvin, Iran
3 Master, Department of Civil Engineering, Imam Khomeini International University, Qazvin, Iran
چکیده [English]

Most of the methods for estimating the strength are either destructive or have expensive and imported equipment. Some of them also indirectly measure the strength. Therefore, a test that has cheap, simple and available equipment, with high accuracy, can be applied in all conditions, has minor damage and can be performed both in the laboratory and on the project site, it is required. Therefore, in this article, the compressive and tensile strength of different mortars and stones have been measured using a in-situ method with cheap and available equipment called "friction transfer" test. In this test, first a partial core with a diameter of 50 mm is created on the surface of the sample, and then the friction transfer device is fixed on the core and using a normal torque meter, a torsional anchor is applied to the core until it fails. be made Then, by determining the surface resistance obtained from the friction transfer test and comparing the obtained results with standard tests, the equations obtained to convert the results from the "friction transfer" test into the uniaxial compressive strength of the materials are presented. Tests were performed on seven different types of stone and cement mortars that are used in normal repair works. The obtained results show the high accuracy of the friction transfer test in measuring the strength of stones and mortars. The coefficient of determination between the results of the friction transfer test and the uniaxial compressive strength of the stones was found to be 93.2%, and according to the calibration curve, by using the friction transfer test, the compressive strength of the stones can be determined using the equation y=1.67x+90.8 measured. Also, by using the friction transfer test, the compressive and tensile strength of mortars can be measured with an accuracy of about 94%.

کلیدواژه‌ها [English]

  • Surface Failure
  • Novel Method
  • Compressive Strength
  • Tensile Strength
  • Calibration Diagrams
[1] Bieniawski, Z.T. (1974). Estimating the strength of rock materials. Journal of the South African Institute of Mining and Metallurgy, 74(2), p. 312 -320.
[2] ACI Committee 214. (2003). Guide for Obtaining Cores and Interpreting Compressive Strength Results. Report 214.4R-03, American Concrete Institute, p. 16.
[3] Masi, A. Digrisolo, A. and Santarsieo, G. (2003). Experimental evaluation of drilling damage on the strength of cores extracted from RC buildings. in Proceedings of World Academy of Science, Engineering and Technology, 7(7),  p. 749.
[4] ASTM C900-15. (2015). Standard Test Method for Pullout Strength of Hardened Concrete, ASTM International, West Conshohocken, PA, p. 10.
[5] Rabe, C. Silva, G. Lopes, AL. Nunes, S. and Silva, CG. (2018). Development of a new correlation to estimate the unconfined compressive strength of a Chicontepec Formation. Int J Geomech 18(8), p. 1-17.
[6] Jalali, Sh. Heidari, M. and Zarrinshoja, M. (2019). Predicting of uniaxial compressive strength of some igneous and metamorphic rocks by block punch index and cylindrical punch index tests. Int J Rock Mech Min Sci, 119(3), p. 72-80.
[7] Kahraman, S. Fener, M. and Kilic, CO. (2016). A preliminary study on the conversion factor used in the prediction of the UCS from the BPI for pyroclastic rocks. Bull Eng Geol Environ 75 (1), p. 771– 780.
[8] Kumar, R. Bhargava, K. and Choudhury, D. (2017). Correlations of uniaxial compressive strength of rock mass with conventional strength properties through random number generation. Int J Geomech 17(2), p. 14-25.
[9] Kayabali, K.and Selcuk, L. (2010). Nailpenetration test for determining the uniaxial compressive strength of rock. International Journal of Rock Mechanics & Mining Sciences, 47(2), p. 265 -271.
[10] Yilmaz, I. (2009). A new testing method for indirect determination of the unconfined compressive strength of rocks. International Journal of Rock Mechanics & Mining Sciences, 46(3), p. 1349 -1357.
[11] Mehrabi, S. Haftani, M. Bohloli, B. and Cheshomi, A. (2012). Measurement of uniaxial compressive strength of rocks using reconstructed cores from rock cuttings. Journal of Petroleum Science and Engineering, 12(1), p. 1-14.
[12] Alber, M. and Kahraman, S. (2009). Prediction the Uniaxial Compressive Strength and Elastic Modulus of a fault Breccia from Texture coefficient. Rock Mechanics and Rock Engineering, 42(4), p. 117 -127.
[13] ASTM C1583/C1583M. (2013). Standard Test Method for Tensile Strength of Concrete Surfaces and the Bond Strength or Tensile Strength of Concrete Repair and Overlay Materials by Direct Tension (Pull-off Method), ASTM International, West Conshohocken, PA, p. 17.
[14] E, Pereira. and M.H.F, Medeiros. (2012). Pull off Test to Evaluate the Compressive Strength of Concrete: an Alternative to Brazilian Standard Techniques. Ibracon Structures and Materials Journal. 5(6). p. 757-780.
[15] ASTM C597-16. (2016). Standard Test Method for Pulse Velocity Through Concrete, ASTM International, West Conshohocken, PA, p. 18.
[16] ASTM C808/C805M-18. (2018). Standard Test Method for Rebound Number of Hardened Concrete, ASTM International, West Conshohocken, PA, p. 14.
[17] M, Naderi. (2007). New Twist-Off Method for the Evaluation of In-Situ Strength of Concrete, Journal of Testing and Evaluation. 35(6), p. 20-33.
[18] M, Naderi. (2005). Friction-transfer test for the assessment of in situ strength and adhesion of cementitious materials. Constr. Build. Mater, 19(2), p. 454–459.
[19] A, Saberi Varzaneh. And M, Naderi. (2020). Determination of Compressive and Flexural Strengths of In-situ Pozzolanic Concrete Containing Polypropylene and Glass Fibers Using "Twist-off" Method. Modares Civil Engineering Journal, 20(5), p. 54-68.
[20] M, Naderi. A, Smaili. and A, Saberi Varzaneh. (2021). Assessment of the application "twist-off" method for determining the in situ compressive and flexural strengths in the fiber concrete. Journal of Structural and Construction Engineering, 8(3), p. 23-41.
[21] A, Saberi Varzaneh. And M, Naderi. (2121). “Friction-Transfer” Method to Assess the Compressive and Tensile Strengths and Rupture Modulus of Fiber-Reinforced-Pozzolanic Concrete and Mortar/Steel Adhesion. AUT J. Civil Eng., 5(4), 557-576.
[22] A, Saberi Varzaneh. and M, Naderi. (2020). Analyzing the Effect of Polypropylene Fibers on Compressive Behavior, Shrinkage and Bond Strength of Repair Mortars/Concrete Substrate. Journal of Structural and Construction Engineering, 8(8), pp. 208-228.
[23] A, Saberi Varzaneh. and M, Naderi. (2020). NUMERICAL AND EXPERIMENTAL STUDY OF SEMI-DESTRUCTIVE TESTS TO EVALUATE THE COMPRESSIVE AND FLEXURAL STRENGTH OF POLYMER-MODIFIED MORTARS AND THEIR ADHESION TO THE CONCRETE SUBSTRATE. Revista Română de Materiale / Romanian Journal of Materials, 50(4), p. 537–544.
[24] A.R. Kaboudan., M. Naderi, (2022). Effect of aggregates on the compressive strength and permeability of concrete. Sharif Journal of Civil Engineering. 127- J30_Volume 37.2_Issue 4.1_Pages 81-92.
[25] A.R. Kaboudan., M. Naderi, (2021). Experimental study of the effect of aggregate type on concrete strength and permeability. Journal of Building Engineering 37 (2021) 101928.
[26] M, Naderi. R, Valibeigi. and M, Mirsafi. (2017). Investigating the effect of type of aggregate on strength and permeability of concrete. 5(1), 109-126.
[27] A, Saberi Varzaneh. and M, Naderi. (2021). Determination of shrinkage, tensile and compressive strength of repair mortars and their adhesion on the concrete substrate using "twist-off" and "pull-off" methods. Iran J Sci Technol Trans Civ Eng, 45(2), p. 2377-2395.
[28] A, Saberi Varzaneh. and M, Naderi. (2022). Using "twist-off" and "pull-off" tests to investigate the effect of polypropylene fibers on the bond of mortar/concrete and to evaluate their in-situ compressive strength. Amirkabir Civil Engineering Journal, 54(5), p. 1-14.
[29] ASTM C136-01. (2001). Standard Test Method for Sieve Analysis of Fine and Coarse Aggregates. American Society for Testing and Materials, p. 15.
[30] ASTM C127. (2012). Standard test method for density, relative density (specific gravity), and absorption of fine aggregate, West Conshohocken PA, American Society for Testing and Materials, p. 20.
[31] H, Sadeghi. (2010). Construction and Laboratory Materials, Imam Hossein (AS) University, Tehran, Iran, ISBN: 9789644522147.
[32] Publication 101 General Specifications of Roads, (2012), Vice President of Strategic Planning and Supervision, Tehran, Iran.
[33] ASTM C109. (2013). Standard test method for compressive strength of hydraulic cement mortars (using 2-in. or [50-mm] cube specimens), American Society for Testing and Materials, p.21.
[34] ASTM C190. (1985).  Standard test method for tensile strength of hydraulic cement mortars (Withdrawn 1990), American Society for Testing and Materials, p. 14.
[35] O, Cakir, and F, Akoz. (2008). Effect of Curing Condition on the Mortars With and Without GGBFS. Construction and Building Materials 22, 308-314.
[36] V. Han, S. Ros, and H. Shima. (2014). Effects of Content, Superplasticizer Dosage, and Mixing Time on Compressive Strength of Mortar. ACI Material Journal.
[37] A. M. Neville, (2012). Properties of concrete. 5 Edition. Harlow, United Kingdom.
[38]. G, Tir. (2004). “Still, Strength of cementitious mortars: a literature review with special reference to weak mortars in tension” United Kingdom, University of Warwick, Coventry, CV4 7AL.
[39] British Standard Institution. (2008).. method for Determination of Compressive Strength of Concrete Cores, BSI 1881: Part 120: 1983.
[40] ACI Committee 318. (2019). Building Code Requirements for Structural Concrete and Commentary.  American Concrete Institute, Report 318R-19.