بررسی تاثیر الیاف بر خواص مکانیکی بتن پلیمری پلی استری سبک‌وزن

نوع مقاله : علمی - پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد سازه، دانشکدة مهندسی عمران، دانشگاه صنعتی اصفهان، اصفهان، ایران

2 استادیار، دانشکدة مهندسی عمران، دانشگاه صنعتی اصفهان، اصفهان، ایران

چکیده

از بتن پلیمری به دلیل خواص مطلوب، برای تعمیر و یا ساخت سازه‌هایی که نیاز هم‌زمان به مقاومت مکانیکی و دوام بالا در مدت زمان کوتاه دارند استفاده می‌شود. از طرفی کاهش وزن بتن پلیمری با استفاده از سنگ دانه‌های سبک، می‌تواند مزایای کاربرد این نوع بتن را در موارد عملی به منظور سهولت بیش‌تر در ترمیم بتن‌های آسیب دیده یا استفاده در شرایط خاص دو چندان نماید. از آن جا که افزایش مقاومت بتن، معمولا کاهش شکل پذیری را به دنبال دارد، لذا استفاده از الیاف در ماتریس بتن، می‌تواند تا حد زیادی مشکل کاهش شکل‌پذیری را جبران نماید. هدف از این پژوهش، بررسی خواص مکانیکی بتن پلیمری پلی ‌استری بهینه شده‌ی سبک‌وزن (با و بدون الیاف) و مقایسه‌ی آن با خواص مکانیکی بتن سبک می‌باشد. برای بررسی خواص مکانیکی بتن پلیمری از آزمایشات مقاومت فشاری، مقاومت کششی، مقاومت خمشی، مقاومت در برابر ضربه و مقاومت در برابر سایش استفاده گردید. هم‌چنین، از تصاویر میکروسکوپ الکترونی (SEM) به منظور بررسی تاثیر الیاف بر ریز ساختار نمونه‌های بتن پلیمری استفاده شد. نتایج نشان می‌دهد که هم راستا با بهبود چشم‌گیر مقاومت‌های مکانیکی بتن پلیمری نسبت به بتن سبک، افزودن الیاف می‌تواند خواص مکانیکی بتن پلیمری را ارتقا دهد. در این تحقیق، استفاده از 0.25 درصد حجمی الیاف ترکیبی (پلی پروپیلن و کورتا) در طرح اختلاط بتن پلیمری، سبب افزایش مقاومت فشاری، کششی، مقاومت خمشی و مقاومت در برابر سایش به ترتیب به میزان 9.1، 8.8، 6.2 و 6.3 درصد نسبت به بتن پلیمری فاقد الیاف شده است. هم‌چنین وجود الیاف در ساختار بتن پلیمری، همانند بتن معمولی، بهبود مقاومت بتن در برابر ضربه و شکل‌پذیری بهتر را به دنبال دارد. آنالیز تصاویر میکروسکوپ الکترونی حاکی از پیوستگی و انسجام الیاف پلی‌پروپیلن و ماتریس بتن پلیمری است که می‌تواند توجیه مناسبی برای ارتقای خواص مکانیکی بتن پلیمری حاوی الیاف محسوب شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Investigating the effect of Fibers on the Mechanical properties of Lightweight Polyester Polymer Concrete

نویسندگان [English]

  • Mohammad Mahdi Shiravi 1
  • Mohammad Reza Eftekhar 2
1 M.S Student of structure, Department of Civil Engineering, Isfahan University of Technology, Isfahan, Iran
2 Assistant Professor, Department of Civil Engineering, Isfahan University of Technology, Isfahan, Iran
چکیده [English]

Due to its desirable properties, polymer concrete is used for repairing or building structures that require both mechanical strength and high durability in a short period of time. On the other hand, reducing the weight of polymer concrete by using light aggregates can double the benefits of using this type of concrete in practical cases in order to make it easier to repair damaged concrete or use it in special conditions. Since the increase in concrete strength usually results in a decrease in ductility, therefore, the use of fibers in the concrete matrix can largely compensate for the problem of the decrease in ductility. The aim of this research is to investigate the mechanical properties of lightweight optimized polyester polymer concrete (with and without fibers) and compare it with the mechanical properties of lightweight concrete. To check the mechanical properties of polymer concrete, compressive strength, tensile strength, flexural strength, impact resistance and abrasion resistance tests were used. Also, electron microscope (SEM) images were used to investigate the effect of fibers on the microstructure of polymer concrete samples. The results showed that in line with the remarkable improvement of the mechanical resistance of polymer concrete compared to light concrete, the addition of fibers can improve the mechanical properties of polymer concrete. In this study, the use of 0.25 percent by volume of composite fibers in the mixing design of polymer concrete increases the compressive, tensile, flexural, and abrasion resistance by 9.1, 8.8, 6.2, and 6.3 percent, respectively, compared to polymer concrete without It is fiber. The analysis of SEM indicates the continuity and cohesion of polypropylene fibers and polymer concrete matrix, which can be considered as a good justification for improving the mechanical properties of polymer concrete containing fibers.

کلیدواژه‌ها [English]

  • Polymer concrete
  • Polyester resin
  • Mechanical strengths
  • Impact resistance
  • Abrasion resistance
[1]        Muthukumar, M. and Mohan, D., (2004). Studies on polymer concretes based on optimized aggregate mix proportion. European polymer journal40(9), pp.2167-2177.
[2]        Toufigh, V., Hosseinali, M. and Shirkhorshidi, S.M., (2016). Experimental study and constitutive modeling of polymer concrete’s behavior in compression. Construction and Building Materials112, pp.183-190.
[3]        Jafari, K. and Toufigh, V., (2017). Experimental and analytical evaluation of rubberized polymer concrete. Construction and Building Materials155, pp.495-510.
[4]        Liu, W., Wu, J. and Ge, H., (2016). Influence of Aggregate on the Mechanical Properties of UP Polymer Concrete. In 2016 5th International Conference on Advanced Materials and Computer Science (ICAMCS 2016) (pp. 284-287). Atlantis Press.
[5]        Reis, J.M.L.D. and Jurumenh, M.A.G., (2011). Experimental investigation on the effects of recycled aggregate on fracture behavior of polymer concrete. Materials Research14, pp.326-330.
 [6]       Sarami, N. and Mahdavian, L., (2017). Mechanical properties of artificial stones produced from sludge of stone-cutting factories (SSCF): the effects of nano-fillers (aTiO2 and ZnO nanoparticles). Silicon9(2), pp.165-172.
[7]        Hassani Niaki, M., Fereidoon, A. and Ghorbanzadeh Ahangari, M., (2018). Mechanical properties of epoxy/basalt polymer concrete: Experimental and analytical study. Structural Concrete19(2), pp.366-373.
[8]        Jiang, C., Jin, C., Wei, M., Yan, S. and Chen, D., (2018). Mechanical and thermal properties improvement of unsaturated polyester resin by incorporation of TiO2 nanoparticle surface modified with titanate. Materials Research Express5(11), p.115008.
[9]        Jafari, K., Tabatabaeian, M., Joshaghani, A. and Ozbakkaloglu, T., (2018). Optimizing the mixture design of polymer concrete: An experimental investigation. Construction and Building Materials167, pp.185-196.
[10]      Shen, Y., Huang, J., Ma, X., Hao, F. and Lv, J., (2020). Experimental study on the free shrinkage of lightweight polymer concrete incorporating waste rubber powder and ceramsite. Composite Structures242, p.112152.
[11]      Ataabadi, H.S., Zare, A., Rahmani, H., Sedaghatdoost, A. and Mirzaei, E., (2020). Lightweight dense polymer concrete exposed to chemical condition and various temperatures: An experimental investigation. Journal of Building Engineering34, p.101878.
[12]      Ferdous, W., Manalo, A., Wong, H.S., Abousnina, R., AlAjarmeh, O.S., Zhuge, Y. and Schubel, P., (2020). Optimal design for epoxy polymer concrete based on mechanical properties and durability aspects. Construction and Building Materials232, p.117229.
[13]      Heidarnezhad, F., Jafari, K. and Ozbakkaloglu, T., (2020). Effect of polymer content and temperature on mechanical properties of lightweight polymer concrete. Construction and Building Materials260, p.119853.
[14]      Ataabadi, H.S., Sedaghatdoost, A., Rahmani, H. and Zare, A., )2021(. Microstructural characterization and mechanical properties of lightweight polymer concrete exposed to elevated temperatures. Construction and Building Materials311, p.125293.
[15]      Sarde, B., Patil, Y., Dholakiya, B. and Pawar, V., (2022). Effect of calcined kaolin clay on mechanical and durability properties of pet waste-based polymer mortar composites. Construction and Building Materials318, p.126027.
[16]      Vipulanandan, C., Dharmarajan, N. and Ching, E., (1988). Mechanical behaviour of polymer concrete systems. Materials and Structures21(4), pp.268-277.
[17]      Reis, J.M.L., (2006). Fracture and flexural characterization of natural fiber-reinforced polymer concrete. Construction and building materials20(9), pp.673-678.
[18]      Martínez-Barrera, G., Vigueras-Santiago, E., Martínez-López, M., Ribeiro, M.C., Ferreira, A.J. and Brostow, W., (2013). Luffa fibers and gamma radiation as improvement tools of polymer concrete. Construction and Building Materials47, pp.86-91.
[19]      Niaki, M.H., Fereidoon, A. and Ahangari, M.G., (2018). Experimental study on the mechanical and thermal properties of basalt fiber and nanoclay reinforced polymer concrete. Composite Structures191, pp.231-238.
[20]      Hu, B., Zhang, N., Liao, Y., Pan, Z., Liu, Y., Zhou, L., Liu, Z. and Jiang, Z., (2018). Enhanced flexural performance of epoxy polymer concrete with short natural fibers. Science China Technological Sciences61(8), pp.1107-1113.
[21]      Shen, Y., Liu, B., Lv, J. and Shen, M., (2019). Mechanical properties and resistance to acid corrosion of polymer concrete incorporating ceramsite, fly ash and glass fibers. Materials12(15), p.2441.
[22]      JIS A 1181. (2005). Test methods for polymer concrete.
[23]      ASTM-C39, (2017). Standard test method for compressive strength of cylindrical concrete specimens, ASTM International.
[24]      ASTM C190. (2001), West Conshohocken, PA: American Society for Testing Matels.
[25]      ASTM-C496, (2017). Standard test method for splitting tensile strength of cylindrical concrete specimens, ASTM International,
[26]      ASTM-C293, (2016). Standard test method for flexural strength of concrete (using simple beam with center-point loading), ASTM International, USA.
[27]      ASTM C1138-97 (1997), Standard Test Method for Abrasion Resistance of Concrete (Underwater Method), ASTM International, West Conshohocken, USA.
[28]      Moodi, F., Kashi, A., Ramezanianpour, A.A. and Pourebrahimi, M., (2018). Investigation on mechanical and durability properties of polymer and latex-modified concretes. Construction and Building Materials191, pp.145-154.
[29]      American Society for Testing and Materials, (1989). Standard test method for resistance to degradation of small-size coarse aggregate by abrasion and impact in the Los Angeles machine. American Society for Testing and Materials.
[30]      ACI 544.2R-17 (2017), Report on the Measurement of Fresh State Properties and Fiber Dispersion of Fiber-Reinforced Concrete, American Concrete Institute, Farmington Hills, MI.
[31]      Pachideh, G. and Gholhaki, M., (2021). An experimental investigation into effect of temperature rise on mechanical and visual characteristics of concrete containing recycled metal spring. Structural Concrete22(1), pp.550-565.
[32]      Gholhaki, M., Pachideh, G. and Rezayfar, O., (2017). An experimental study on mechanical properties of concrete containing steel and polypropylene fibers at high temperatures. Journal of Structural and Construction Engineering4(3), pp.167-179.
[33]      Pachideh, G. and Gholhaki, M., (2019). An experimental study on the effects of adding steel and polypropylene fibers to concrete on its resistance after different temperatures. ASTM International.
[34]      Gao, Y., Zhang, H., Huang, M. and Lai, F., (2019). Unsaturated polyester resin concrete: A review. Construction and Building Materials228, p.116709.
[35]      Al Qadi, A.N. and Al-Zaidyeen, S.M., (2014). Effect of fibre content and specimen shape on residual strength of polypropylene fibre self-compacting concrete exposed to elevated temperatures. Journal of king Saud university-engineering sciences26(1), pp.33-39.
[36]      Karimipour, A., Ghalehnovi, M., De Brito, J. and Attari, M., (2020). The effect of polypropylene fibres on the compressive strength, impact and heat resistance of self-compacting concrete. In Structures (Vol. 25, pp. 72-87).
[37]      Yuan, Z. and Jia, Y., 2021. Mechanical properties and microstructure of glass fiber and polypropylene fiber reinforced concrete: An experimental study. Construction and Building Materials266, p.121048.
[38]      Behfarnia, K. and Rostami, M., (2017). Mechanical properties and durability of fiber reinforced alkali activated slag concrete. Journal of materials in civil engineering29(12), p.04017231.