ارزیابی اثر چرخه انجماد و ذوب بر رفتار نشست‌پذیری شیل پودر شده- خاک رسی در برابر فلزات سنگین سرب و روی

نوع مقاله : علمی - پژوهشی

نویسندگان

1 دانشجوی دکتری، دانشکده فنی، دانشگاه محقق اردبیلی، اردبیل، ایران

2 دانشیار، دانشکده فنی، دانشگاه محقق اردبیلی، اردبیل، ایران.

چکیده

با افزایش جمعیت، پیشرفت تکنولوژی و به تبع آن افزایش آلاینده‌های فلزات سنگین و نیز قرار گرفتن یک چهارم سطح زمین در مناطق سردسیر، مطالعه‌ی تاثیر فرایند انجماد و ذوب روی خاک‌های رسی و پیش بینی رفتار آن‌ها با گذشت زمان ضروری ‌می‌باشد. با توجه به این‌که اثر چرخه انجماد و ذوب بر رفتار خاک‌های رسی آلوده به فلز سنگین کمتر مورد بررسی قرار گرفته است و همچنین گستردگی وجود خاک رسی با خمیری پایین و سنگ رسوبی شیل در کشور ایران به عنوان نوآوری، در مقاله حاضر هدف بررسی تاثیر چرخه انجماد و ذوب بر رفتار نشست‌پذیری ترکیب شیل پودر شده- خاک رسی در برابر آلاینده‌های فلزات سنگین سرب و روی می‌باشد. در پژوهش حاضر خاک رسی با خمیری پایین به همراه 40 و 60 درصد شیل خرد شده مورد بررسی قرار گرفت. برای این منظور تعداد 60 آزمایش تحکیم یک بعدی و حدود اتربرگ ‌بر روی ترکیب شیل پودری-خاک رس در برابر 0، ۵ و ۲۵ سانتی مول بر کیلوگرم خاک، از آلاینده‌های نیترات سرب و نیترات روی انجام گرفت. بر اساس نتایج بدست آمده، بیشترین تغییرات حد روانی مربوط به نمونه‌‌های آلوده به 25 سانتی مول نیترات سرب پس از 12 چرخه انجماد و ذوب با 43 درصد کاهش می‌باشد. کمترین تغییرات حد روانی مربوط به ترکیب 40 درصدی کائولینیت با 25 سانتی‌مول آلاینده نیترات روی می‌باشد. همچنین نتایج بدست آمده از آزمایش تحکیم بیان‌گر این موضوع است که خصوصیات نشست‌پذیری نمونه‌ها تحت تاثیر غلظت آلاینده فلز سنگین سرب و روی و چرخه انجماد و ذوب قرار داشته است. افزایش آلاینده فلز سنگین منجر به کاهش نسبت تخلخل اولیه و شاخص فشردگی نمونه‌ها و چرخه انجماد و ذوب منجر به افزایش این نسبت‌ها گردیده است. همچنین حداکثر تغییرات در چهار چرخه اول انجماد و ذوب ایجاد شده در حالی‌که تا چرخه دوازدهم تغییرات ناچیز بوده است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Evaluation of the effect of freeze-thaw cycles on the compressibility of powdered shale-clay in the presence of lead and zinc heavy metals

نویسندگان [English]

  • Minoo Nikghalbpour 1
  • Alireza Negahdar 2
1 Ph.D. Candidate, Technical Faculty, Mohagheghe Ardabili University, Ardabil, Iran
2 Associate Professor, Technical Faculty, Mohagheghe Ardabili University, Ardabil, Iran
چکیده [English]

With the population growth, technological advancement, and the increase in heavy metal pollutants, besides the location of a quarter of the earth's surface in cold regions, it is necessary to study the effect of freeze-thaw cycles on clay and predict its behavior over time. The effect of freeze-thaw cycles on the behavior of clay contaminated with heavy metals has been less studied. In addition, low plasticity clay and shale sedimentary rock are frequent in Iran. As an innovation in this article, the effect of the freeze-thaw cycles on the compressibility behavior of shale-clay soil in the presence of lead and zinc heavy metal pollutants is investigated. The combination of low plasticity clay with 40 and 60% crushed shale was investigated. For this purpose, 60 one-dimensional and Atterberg limit tests were conducted on the samples in the presence of 0, 5 and 25 cmol/kgsoil of lead nitrate and zinc nitrate pollutants. According to the obtained results, the most changes in liquid limit are related to the samples contaminated with 25 cmol of lead nitrate after 12 cycles of freeze-thaw cycles with a 43% reduction. And the lowest changes in liquid limit are related to the combination of 40% kaolinite with 25 cmol of zinc nitrate pollutant. Also, the results obtained from the consolidation test indicate that the compressibility of the samples was affected by the concentration of lead and zinc heavy metal pollutants and the freeze-thaw cycles. The increase of heavy metal pollutants led to a decrease in the initial void ratio and compressibility index of the samples compared to freeze-thaw cycle, which led to an increase in these ratios. The maximum changes were made in the first four cycles of the freeze-thaw cycle, and the changes were insignificant until the 12th cycle.

کلیدواژه‌ها [English]

  • Clay cover
  • Landfill
  • Cold regions
  • 1-D Consolidation
  • Heavy metal
[1] Yong, R.N. (2000). Geoenvironmental engineering: Contaminated soils, pollutant fate, and mitigation. 1st edition. Boca Raton: CRC press, 320.
[2] Zhou, Q., Liu, Y., Li, T., Zhao, H., Alessi, D.S., Liu, W., Konhauser, K.O. (2020). Cadmium adsorption to clay-microbe aggregates: Implications for marine heavy metals cycling. Geochimica et Cosmochimica Acta, 290, 124-136.
[3] Mitchell, J. K., and Soga, K. (2005). Fundamentals of soil behavior. New York: John Wiley & Sons, 592.
[4] Xu, H., Shu, S., Wang, S., Zhou, A., Jiang, P., Zhu, W., Chen, L. (2019). Studies on the chemical compatibility of soil-bentonite cut-off walls for landfills. Journal of environmental management, 237, 155-162.
[5] Emami, S., Negahdar, A., Zarei, M. (2019). Investigating the influence of the leachate from the municipal solid waste on the mechanical and environmental properties of soil around the landfill (case study: The municipal landfill located in Ardabil—Iran). Arabian journal for science and engineering, 44(10), 8417-8428.
[6] Varank, G., Demir, A., Adar, E., Bilgili, M. S., Top, S., Yazici Guvenc, S., Ozcoban, M. S. (2017). Investigation of Liner Systems in Transport of Organic and Inorganic Contaminants in Sanitary Landfill: A Case Study. CLEAN–Soil, Air, Water, 45(1).
[7] Ito, A., & Wagai, R. (2017). Global distribution of clay-size minerals on land surface for biogeochemical and climatological studies. Scientific data, 4(1), 1-11.
[8] Sasanian, S. (2011). The behaviour of cement stabilized clay at high water contents. Doctor of Philosophy. The University of Western Ontario, Faculty of Engineering Science.
[9] Environmental Protection Agency. (1983). Process Design Manual—Land Application of Municipal Sludge. EPA 625/1‐83‐016.
[10] Arasan, S. (2010). Effect of chemicals on geotechnical properties of clay liners: a review. Research Journal of Applied Sciences, Engineering and Technology, 2(8), 765-775.
[11] Norouzi, A., Uygar, E., & Nalbantoglu, Z. (2022). A review on the effects of landfill leachate on the physical and mechanical properties of compacted clay liners for municipality landfills. Arabian Journal of Geosciences, 15(12), 1-27.
[12] Hamzah, A. J. (2010). The Potential of Kaolinite as a Landfill Liner Material. Doctor of Philosophy. UNIVERSITI MALAYSIA PAHANG, Faculty of Civil Engineering and Earth Resources.
[13] Ouhadi, V. R., Bahadori Nezhad, O. R., Amiri, M. (2014). Lead Retention of Carbonated Kaolinite in the Adsorption and Electrokinetics Processes. Modares Journal of Civil Engineering, 14(3). (In Persian).
[14] Shariatmadari, N., Saiedijam, S., Ouhadi, V. R. (2009). Studying the effect of carbonate on the efficiency of the electrokinetic method in decontamination of heavy metal zinc from clay soils on a workshop scale. Modares Journal of Civil Engineering, 7(11), 45-59. (In Persian).
[15] Li, L., Lin, C., & Zhang, Z. (2017). Utilization of shale-clay mixtures as a landfill liner material to retain heavy metals. Materials & Design, 114, 73-82.
[16] Hassanlourad, M., Khatami, M. H., Ahmadi, M. M. (2017). Effects of sulphuric acid pollutant on the shear behaviour and strength of sandy soil and sand mixed with bentonite clay. International Journal of Geotechnical Engineering, 11(2), 114-119.
[17] Di Emidio, G., Verastegui-Flores, R. D., Mazzieri, F., & Dominijanni, A. (2017). Modified clays for barriers: a review. Innovative Infrastructure Solutions, 2(1), 1-13.
[18] Negahdar, A., & Nikghalbpour, M. (2020). Geotechnical properties of sandy clayey soil contaminated with lead and zinc. SN Applied Sciences, 2(8), 1-13.
[19] Liu, Y., Xiao, T., Zhu, Z., Ma, L., Li, H., & Ning, Z. (2021). Geogenic pollution, fractionation and potential risks of Cd and Zn in soils from a mountainous region underlain by black shale. Science of the Total Environment, 760, 143426.
[20] Fereidoni, M., Lotfi, M., Rashid nejad, N., Rashidi, M. (2016). Evaluate geochemical trace elements of Qalikuh oil shale (Southwest Aligoodarz) using elemental analysis and rock eval pyrolysis. Scientific Quarterly Journal of Geosciences, 25(98), 171-180.
[21] Bolt, G. H. (1956). Physico-chemical analysis of the compressibility of pure clays. Geotechnique, 6(2), 86-93.
[22] Sridharan, A., Jayadeva, M. S. (1982). Double layer theory and compressibility of clays. Geotechnique, 32(2), 133-144.
[23] Ouhadi, V. R., Yong, R. N., Sedighi, M. (2006). Influence of heavy metal contaminants at variable pH regimes on rheological behaviour of bentonite. Applied Clay Science, 32(3-4), 217-231.
[24] Dutta, J., Mishra, A. K. (2016). Consolidation behaviour of bentonites in the presence of salt solutions. Applied Clay Science, 120, 61-69.
[25] Li, J. S. (2018). Evolution Mechanism on Structural Characteristics of Lead-Contaminated Soil in the Solidification/Stabilization Process. Doctoral Thesis .Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, China Springer.
[26] Dutta, J., Mishra, A. K. (2017). Consolidation behavior of compacted bentonites in the presence of heavy metals. Journal of Hazardous, Toxic, and Radioactive Waste, 21(3), 04017003.
[27] Miranda-Trevino, J. C., & Coles, C. A. (2003). Kaolinite properties, structure and influence of metal retention on pH. Applied Clay Science, 23(1-4), 133-139.
[28] Negahdar, A., Shabanian, M. R., Nikghalbpour, M., (2018). The Effect of Heavy Metal Contaminants on the Strength Parameters of Sandy Clay. AMIRKABIR JOURNAL OF CIVIL ENGINEERING (AMIRKABIR), 50(5), 835-844. (In Persian).
[29] Negahdar, A., Nikghalbpour, M., Shabanian, M. R., Ghadimi Ardebili, N., (2019). The Effect of Heavy Metal Contaminants on the Strength Parameters of Sandy Clay. AMIRKABIR JOURNAL OF CIVIL ENGINEERING (AMIRKABIR), 51(2), 341-350. (In Persian).
[30] Andersland, O. B., & Ladanyi, B. (2003). Frozen ground engineering. 2nd edition. New Jersey: John Wiley & Sons, 384.
[31] Qi, J., Vermeer, P. A., & Cheng, G. (2006). A review of the influence of freeze‐thaw cycles on soil geotechnical properties. Permafrost and periglacial processes17(3), 245-252.
[32] Marion, G. M. (1995). Freeze-Thaw Processes and Soil Chemistry. Cold Regions Research and Engineering Lab Hanover NH.
[33] Ouhadi, V. R., Kargar, L. (2013).Effects of freezing and thawing cycles on environmental geotechnical behavior of soils contaminated with heavy metals. In: 1st National Geotechnical Engineering Conference. Ardabil.
[34] Van den Bosch, T. J. H. (2015). Influences of ice lens formation in a silty soil. MSc Graduation Thesis. Delft University of Technology, Faculty of Civil Engineering and Geosciences.
[35] Czurda, K. A. (1983). Freezing effects on soils: Comprehensive summary of the ISGF 82. Cold Regions Science and Technology, 8(2), 93-107.
[36] Liu, J. K., & Peng, L. Y. (2009). Experimental study on the unconfined compression of a thawing soil. Cold Regions Science and Technology, 58(1-2), 92-96.
[37] Hohmann-Porebska, M. (2002). Microfabric effects in frozen clays in relation to geotechnical parameters. Applied clay science, 21(1-2), 77-87.
[38] Kawaguchi, T., Nakamura, D., Yamashita, S., Yamasaki, S., Ishikawa, T. (2013). Effects of freeze-thaw history on deformation-strength properties and permeability of fine-grained soil. In: Proc. of the 18th International Conference on Soil Mechanics and Geotechnical Engineering, Vol. 1, 357-360.
[39] Simonsen, E., & Isacsson, U. (2001). Soil behavior during freezing and thawing using variable and constant confining pressure triaxial tests. Canadian Geotechnical Journal, 38(4), 863-875.
[40] Konrad, J. M. (1990). A new concept of frost-heave characteristics of soils, by Otto J. Svec: Comments. Cold regions science and technology, 18(2), 219-222.
[41] ASTM Committee D4318-17E01 on Soil and Rock. (2018). Standard test methods for liquid limit, plastic limit, and plasticity index of soils. ASTM international.
[42] ASTM Committee D854-14 on Soil and Rock. (2016). Standard test methods for specific gravity of soil solids by water pycnometer: ASTM international.
[43] Shelley, T. (1999). Hand protection and glove selection. Including glove selection for some specific chemicals.
[44] Armour, M. A. (1988). Chemical waste management and disposal. Journal of Chemical Education, 65(3), A64.
[45] Ouhadi, V. R., Haghayegh, A., Bayeste, H. (2008). The effect of heavy metal pollutants on the performance of sand and bentonite mixture (SEB) in engineering landfills. Modares Journal of Civil Engineering, 33. (In Persian).
[46] ASTM Committee D560-D560M-16 (2016). Standard Test Methods for Freezing and Thawing Compacted Soil-Cement Mixtures. ASTM international.
[47] ASTM Committee D2435-D2435M-11 on Soil and Rock. (2020). Standard test methods for one-dimensional consolidation properties of soils using incremental loading. ASTM International.
[48] Roy, W. R. (1992). Technical Resource Document: Batch-type procedures for estimating soil adsorption of chemicals (Vol. 87). Office of Solid Waste and Emergency Response, US Environmental Protection Agency.
[49] Mukherjee, S. (2022). Current topics in soil science: an environmental approach. Springer Nature, 268.
[50] Fang, H. Y., & Daniels, J. L. (2017). Introductory geotechnical engineering. 1st edition. Milton: Taylor & Francis.
[51] Anandarajah, A., & Chen, J. (1994). Double-layer repulsive force between two inclined platy particles according to the Gouy-Chapman theory. Journal of colloid and interface science, 168(1), 111-117.
[52] Li, J., Tang, Y., & Feng, W. (2020). Creep behavior of soft clay subjected to artificial freeze–thaw from multiple-scale perspectives. Acta Geotechnica15(10), 2849-2864.
[53] Yong, R. N., Boonsinsuk, P., Tucker, A. E. (1984). A study of frost-heave mechanics of high-clay content soils. ASME, 106,502-508.
[54] Zhang, W., Guo, A., & Lin, C. (2019). Effects of cyclic freeze and thaw on engineering properties of compacted loess and lime-stabilized loess. Journal of materials in civil engineering, 31(9), 04019205.
[55] Ouhadi, V. R., Fakhimjou, M., Naeeni, S. O. (2017). Comparison of the changes plastic limit and permeability of bentonite in the presence of organic pollutants. Journal of Civil and Environmental Engineering, 46(85), 25-36. (In Persian).
[56] He, H., Guo, J., Xie, X., & Peng, J. (2000). Experimental study of the selective adsorption of heavy metals onto clay minerals. Chinese Journal of Geochemistry, 19(2), 105-109.
[57] Viklander, P. (1998). Permeability and volume changes in till due to cyclic freeze/thaw. Canadian Geotechnical Journal, 35(3), 471-477.
[58] Konrad, J. M. (1989). Effect of freeze–thaw cycles on the freezing characteristics of a clayey silt at various overconsolidation ratios. Canadian Geotechnical Journal, 26(2), 217-226.
[59] Chang, D., & Liu, J. (2013). Review of the influence of freeze-thaw cycles on the physical and mechanical properties of soil. Sciences in cold and arid regions5(4), 457-460.
[60] Wu, Y., Zhai, E., Zhang, X., Wang, G., Lu, Y. (2021). A study on frost heave and thaw settlement of soil subjected to cyclic freeze-thaw conditions based on hydro-thermal-mechanical coupling analysis. Cold Regions Science and Technology, 188, 103296.
[61] Tang, Y. Q., & Yan, J. J. (2015). Effect of freeze–thaw on hydraulic conductivity and microstructure of soft soil in Shanghai area. Environmental Earth Sciences, 73(11), 7679-7690.
[62] Lu, J., Zhang, M., Zhang, X., Pei, W., & Bi, J. (2018). Experimental study on the freezing–thawing deformation of a silty clay. Cold Regions Science and Technology, 151, 19-27.