ارائه فرمول هایی برای طراحی بهینه TMD با بهره گیری از روش برنامه ریزی ژنتیک و کاربرد آن در کنترل سازه های در معرض زلزله

نوع مقاله : علمی - پژوهشی

نویسندگان

1 استادیار، گروه مهندسی برق، دانشگاه فنی و حرفه ای، تهران، ایران

2 دانشیار، گروه مهندسی عمران،دانشکده مهندسی معدن، عمران و شیمی، دانشگاه صنعتی بیرجند، بیرجند، ایران.

چکیده

هدف از مقاله حاضر، ارائه فرمول‌های جدید برای تنظیم بهینه پارامترهای میراگر جرمی تنظیم‌شده (TMD) با بهره‌گیری از روش برنامه‌ریزی ژنتیک (GP) و باهدف کاربرد آن در کنترل سازه‌های در معرض زلزله است. برای این منظور، ابتدا مسئله تنظیم بهینه پارامترهای TMD در یک سازه اصلی تحت تحریک شتاب پایه از نوع اغتشاش سفید تبیین شده است. سپس پارامترهای بهینه TMD با استفاده از الگوریتم بهینه‌سازی مبتنی بر آموزش و یادگیری (TLBO) و برای طیف وسیعی از نسبت‌های جرمی TMD و نسبت میرایی سازه تعیین گردیدند. پایگاه داده‌های حاصل برای استخراج فرمول‌هایی مبتنی بر روشGP مورد استفاده قرار گرفتند. کارایی فرمول-های پیشنهادی برای کاربردهای کنترل لرزه‌ای سازه‌ها با تنظیم بهینه پارامترهای TMD برای دو سازه 10 و 40 طبقه و مقایسه آن‌ها با نتایج به‌دست‌آمده از الگوریتم TLBO ارزیابی شد. پاسخ‌های لرزه‌ای سازه‌های موردمطالعه تحت تأثیر چهار زلزله معروف شامل زلزله ال‌سنترو، هاچینو، نورثریج و کوبه نشان داد که تنظیم بهینه پارامترهای TMD به کمک فرمول‌های پیشنهادی، ضمن حذف هزینه محاسباتی ناشی از به‌کارگیری الگوریتم‌های فرا اکتشافی، عملکرد مطلوبی را در کاهش جابجایی و شتاب مطلق طبقات فراهم می‌نمایند و با ارائه یک تنظیم بهینه ساده و سریع، می‌توانند برای کاربردهای کنترل لرزه‌ای سازه‌ها به کار آیند. TMD تنظیم‌شده به کمک TLBO، کاهشی در حدود 03/18 و 72/6 درصد را در بیشینه جابجایی و شتاب طبقات سازه 10 طبقه به‌طور متوسط برای همه زلزله‌ها فراهم نموده، لیکن TMD تنظیم‌شده به کمک فرمول‌های پیشنهادی، به ترتیب سبب کاهش 47/18 و 23/11 درصد در پاسخ‌های مذکور شد. نتایج سازه 40 طبقه نشان داد که این کاهش‌ها به ترتیب برابر 46/9 و 98/0 درصد برای TMD تنظیم‌شده به کمک TLBO بود، درحالی‌که کاهش 58/11 و 1/5 درصد برای TMD تنظیم‌شده به کمک فرمول‌های پیشنهادی در پاسخ بیشینه جابجایی و شتاب طبقات به دست آمد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

New formulas for optimal design of TMD using genetic programming method and their application to control of seismic-excited structures

نویسندگان [English]

  • Abbas-Ali Zamani 1
  • Sadegh Etedali 2
1 Assistant professor, Department of Electrical Engineering, Technical and Vocational University (TVU), Tehran, Iran.
2 Associate professor, Department of Civil Engineering,, Faculty of Mining, Civil and Chemical Engineering, Birjand University of Technology, Birjand, Iran.
چکیده [English]

The purpose of this paper is to propose new formulas for optimal tuning of tuned mass damper (TMD) parameters using the genetic programming (GP) method with the aim of its application in seismic-excited structures. For this purpose, the optimal TMD parameters in the main structure under white-noise base acceleration are determined using the teaching-learning-based optimization (TLBO) algorithm for a wide range of TMD mass ratios and structural damping ratios. The outcome database is then applied to derive formulas based on the GP technique. The proposed formulas have high accuracy and efficiency while eliminating computational costs. Considering two 10-story and 40-story structures, the efficiency of the proposed formulas is then evaluated for seismic control applications of structures. For this purpose, their results are compared with those given by the TLBO algorithm. The numerical studies show that the optimal tuning of TMD parameters using the proposed formulas, while eliminating the computational cost due to the use of meta-heuristic optimization algorithms, provides better performance in reducing the floor displacement and absolute acceleration of the studied structures. Consequently, they can be efficient for seismic control applications of structures by presenting a simple and fast optimal tuning. The TMD tuned using the TLBO results in a reduction of 18.03%, 6.72% in the maximum displacement and acceleration of the 10-story structure, while the TMD adjusted using the proposed formulas gives a reduction of 18.47% and 11.23% in the above-mentioned responses. The results given for the 40-story structure show a reduction of 9.46% and 0.98% for the TMD tuned by the TLBO, while it is found a reduction of 11.58% and 5.1%% in the maximum displacement and acceleration for the TMD tuned by the suggested formulas.

کلیدواژه‌ها [English]

  • Seismic control of structures
  • Tuned mass dampers
  • Optimal design. Teaching-learning-based optimization
  • Genetic programming method
  • Optimal designing formulas
[1] Alizadeh, H. and Hosseini Lavassani, S.H., (2022). The effect of soil-structure interaction on longitudinal seismic responses of suspension bridges controlled by optimal TMD. Journal of Structural and Construction Engineering8(Special Issue 4), pp.439-458.
[2] Khazaei, M., Vahdani, R. and Kheyroddin, A., (2021). Investigation the Effects of Multiple Tuned Mass Damper on Reduction of Seismic Parameters of Tall Buildings Regular and Irregular on Plan in Steel Flexible Structures Under Near and Far-Fault Earthquakes. Journal of Structural and Construction Engineering8(2), pp.244-263.
[3] Rahman Shokrgozar, H., Naeim, K. and Imani Kalasar, H., (2017). Comparison of the Efficiency of Tuned Mass and Tuned Liquid Dampers at High-Rise Structures under Near and Far Fault Earthquakes. Journal of Structural and Construction Engineering3(4), pp.105-119.
[4] Den Hartog, J.P., (1985). Mechanical vibrations. Courier Corporation.
[5] IOI, T. and IKEDA, K., (1978). On the dynamic vibration damped absorber of the vibration system. Bulletin of JSME21(151), pp.64-71.
[6] Warburton, G.B. and Ayorinde, E.O., (1980). Optimum absorber parameters for simple systems. Earthquake Engineering & Structural Dynamics8(3), pp.197-217.
[7] Ayorinde, E.O. and Warburton, G.B., (1980). Minimizing structural vibrations with absorbers. Earthquake Engineering & Structural Dynamics8(3), pp.219-236.
[8] Bapat, V.A. and Kumaraswamy, H.V., (1979). Effect of primary system damping on the optimum design of an untuned viscous dynamic vibration absorber. Journal of sound and vibration63(4), pp.469-474.
[9] Bapat, V.A. and Kumaraswamy, H.V., (1980). Optimizing The Untuned Viscous Dynamic Vibration Absorber With Primary System Damping-A Frequency Locus Method-Reply. Journal of Sound and Vibration73(3), p.472.
[10] Warburton, G.B., (1982). Optimum absorber parameters for various combinations of response and excitation parameters. Earthquake Engineering & Structural Dynamics10(3), pp.381-401.
[11] Tsai, H.C. and Lin, G.C., (1993). Optimum tuned‐mass dampers for minimizing steady‐state response of support‐excited and damped systems. Earthquake engineering & structural dynamics22(11), pp.957-973.
[12] Bakre, S.V. and Jangid, R.S., (2007). Optimum parameters of tuned mass damper for damped main system. Structural Control and Health Monitoring: The Official Journal of the International Association for Structural Control and Monitoring and of the European Association for the Control of Structures14(3), pp.448-470.
[13] Leung, A.Y.T. and Zhang, H., (2009). Particle swarm optimization of tuned mass dampers. Engineering Structures31(3), pp.715-728.
[14] Salvi, J. and Rizzi, E., (2012). A numerical approach towards best tuning of Tuned Mass Dampers. In Proc. of 25th Int. Conf. on Noise and Vibration Engineering (ISMA 2012), Leuven, Belgium (pp. 17-19).
[15] Etedali, S. and Mollayi, N., (2018). Cuckoo search-based least squares support vector machine models for optimum tuning of tuned mass dampers. International Journal of Structural Stability and Dynamics18(02), p.1850028.
[16] Keshtegar, B. and Etedali, S., (2018). Nonlinear mathematical modeling and optimum design of tuned mass dampers using adaptive dynamic harmony search algorithm. Structural Control and Health Monitoring25(7), p.e2163.
[17] Etedali, S., Bijaem, Z.K., Mollayi, N. and Babaiyan, V., (2021). Artificial Intelligence-Based Prediction Models for Optimal Design of Tuned Mass Dampers in Damped Structures Subjected to Different Excitations. International Journal of Structural Stability and Dynamics, p.2150120.
[18] Mohebbi, M., Shakeri, K., Ghanbarpour, Y. and Majzoub, H., (2013). Designing optimal multiple tuned mass dampers using genetic algorithms (GAs) for mitigating the seismic response of structures. Journal of Vibration and Control19(4), pp.605-625.
[19] Etedali, S., Seifi, M. and Akbari, M., (2018). A numerical study on optimal FTMD parameters considering soil-structure interaction effects. Geomechanics and Engineering16(5), pp.527-538.
[20] Shahi, M., Sohrabi, M.R. and Etedali, S., (2018). Seismic control of high-rise buildings equipped with ATMD including soil-structure interaction effects. Journal of Earthquake and Tsunami12(03), p.1850010.
[21] Etedali, S., (2020). Ranking of design scenarios of TMD for seismically excited structures using TOPSIS. Frontiers of Structural and Civil Engineering14(6), pp.1372-1386.
[22] Farshidianfar, A. and Soheili, S., (2013). Ant colony optimization of tuned mass dampers for earthquake oscillations of high-rise structures including soil–structure interaction. Soil Dynamics and Earthquake Engineering51, pp.14-22.
[23] Etedali, S., (2017). A new modified independent modal space control approach toward control of seismic-excited structures. Bulletin of Earthquake Engineering15(10), pp.4215-4243.
[24] Etedali, S., Akbari, M. and Seifi, M., (2019). MOCS-based optimum design of TMD and FTMD for tall buildings under near-field earthquakes including SSI effects. Soil Dynamics and Earthquake Engineering119, pp.36-50.
[25] Etedali, S. and Rakhshani, H., (2018). Optimum design of tuned mass dampers using multi-objective cuckoo search for buildings under seismic excitations. Alexandria engineering journal57(4), pp.3205-3218.
[26] Kaveh, A., Javadi, S.M. and Moghanni, R.M., (2020). Optimal structural control of tall buildings using tuned mass dampers via chaotic optimization algorithm. In Structures (Vol. 28, pp. 2704-2713). Elsevier.
[27] Etedali, S., Zamani, A.A. and Tavakoli, S., (2018). A GBMO-based PIλDμ controller for vibration mitigation of seismic-excited structures. Automation in Construction87, pp.1-12.
[28] Hosseinaei, S., Ghasemi, M.R. and Etedali, S., (2021). Optimal design of passive and active control systems in seismic-excited structures using a new modified TLBO. Periodica Polytechnica Civil Engineering65(1), pp.37-55.
[29] Rao, R.V., Savsani, V.J. and Vakharia, D.P., (2011). Teaching–learning-based optimization: a novel method for constrained mechanical design optimization problems. Computer-Aided Design43(3), pp.303-315.
[30] Rao, R.V. and Patel, V., (2013). An improved teaching-learning-based optimization algorithm for solving unconstrained optimization problems. Scientia Iranica20(3), pp.710-720.
[31] Koza, J.R., (1994). Genetic programming as a means for programming computers by natural selection. Statistics and computing4(2), pp.87-112.
[32] Zhang, F., Mei, Y., Nguyen, S. and Zhang, M., (2020). Evolving scheduling heuristics via genetic programming with feature selection in dynamic flexible job-shop scheduling. ieee transactions on cybernetics51(4), pp.1797-1811.
[33] Anđelić, N., Baressi Šegota, S., Lorencin, I., Mrzljak, V. and Car, Z., (2021). Estimation of COVID-19 epidemic curves using genetic programming algorithm. Health informatics journal27(1), p.1460458220976728.
[34] The Math Works, Inc. (2016). MATLAB (Version 2016a).
[35] Ramezani M., Zahrai S.M. (2016). Optimal Parameters of Tuned Mass Damper for Tall Buildings by neural networks. IQBQ. 16 (4) pp.109-122. (In Persian)
[36] Mohebbi M., Shakeri K., Majzoub H. (2012). Genetic Algorithm Based Approach for Optimal Design of Multiple Tuned Mass Dampers (MTMDs) under Earthquake Excitation. IQBQ. 12 (1). (In Persian)
[37] Tahmassebi, A., and Gandomi, A. H. (2018). Building energy consumption forecast using multi-objective genetic programming. Measurement118, 164-171.
[38] Hadi, M. N., and Arfiadi, Y. (1998). Optimum design of absorber for MDOF structures. Journal of Structural Engineering, 124(11), pp. 1272-1280.