بررسی تأثیر حذف ستون میانی بر امکان رخداد خرابی پیشرونده در قاب‌های خمشی بتن آرمه با استفاده از تحلیل حساسیت

نوع مقاله : علمی - پژوهشی

نویسندگان

1 دانشجوی دکترای سازه، گروه مهندسی عمران، واحد سمنان، دانشگاه آزاد اسلامی، سمنان، ایران

2 استاد ممتاز، گروه مهندسی عمران، دانشگاه سمنان، سمنان، ایران

3 دانشیار، مرکز تحقیقات ژئوتکنیک لرزه‌ای و بتن توانمند، گروه مهندسی عمران، واحد سمنان، دانشگاه آزاد اسلامی، سمنان، ایران

چکیده

در این پژوهش، خرابی پیشرونده قاب های بتن آرمه به دنبال حذف ستون میانی بر مبنای شاخص‌های حساسیت و تنومندی مورد بررسی قرار گرفته است. در ابتدا، مدل عددی قاب بتن آرمه با مدل لی و همکاران در نرم افزار SeismoStruct شبیه سازی و صحت سنجی شد. پس از توسعه مدل عددی، سطوح عملکرد و تعداد مفاصل پلاستیک در قاب ها به دست آمد. قاب‌ها در معرض حذف ستون در طبقه اول قرار گرفتند و آسیب پذیری آنها در خرابی پیشرونده تحت تحلیل استاتیکی غیرخطی افزاینده قائم بررسی شد. در تحقیق حاضر، بررسی پارامتری شامل تغییر در تعداد طبقات، طول دهانه، ارتفاع طبقه، مقاومت فشاری بتن، مقاومت تسلیم میلگرد، ضریب پواسون و نسبت میرایی سازه در خرابی پیشرونده قاب‌ها بر مبنای شاخص های حساسیت و تنومندی انجام شد. نتایج نشان داد که افزایش تعداد طبقات از 5 به 20 طبقه، کاهش طول دهانه از 5/5 تا m 3، کاهش ارتفاع طبقه از 4/45 تا m 3/20، افزایش مقاومت فشاری بتن از 21/3 تا MPa 51/3، افزایش مقاومت تسلیم میلگرد از 234 تا MPa 350، افزایش ضریب پواسون از 0/12% تا 0/25% و افزایش نسبت میرایی سازه از 5% به 15% به ترتیب شاخص‌های حساسیت و تنومندی را کاهش و افزایش می دهد. در نتیجه، وضعیت قاب ها در برابر خرابی پیشرونده بهبود می یابد. در نهایت تاثیر حذف همزمان چند ستون در خرابی پیشرونده قاب ها نشان داد که حالت 5 حذف ستون‌ها، دارای کمترین شاخص حساسیت و بیشترین شاخص تنومندی می باشد، در نتیجه شرایط بهتری در خرابی پیشرونده دارد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Evaluation the effect of middle column removal on the occurrence potential of progressive collapse in reinforced concrete moment frames using sensitivity analysis

نویسندگان [English]

  • Seyed Ali Ekrami Kakhki 1
  • Ali Kheyroddin 2
  • Alireza Mortezaei 3
1 Ph.D. Candidate of Structural Engineering, Civil Engineering Department, Semnan Branch, Islamic Azad University, Semnan, Iran
2 Distinguished Professor, Department of Civil Engineering, Semnan University, Semnan, Iran
3 Associate Professor, Seismic Geotechnical and High Performance Concrete Research Centre, Civil Engineering Department, Semnan Branch, Islamic Azad University, Semnan, Iran
چکیده [English]

In this research, the progressive collapse of the reinforced concrete frames following the middle column removal has been investigated based on the sensitivity and robustness indexes. At first, the numerical model of the reinforced concrete frame was simulated and verified with Li et al. model in SeismoStruct software. After developing the numerical model, the performance levels and the number of plastic hinges in the frames were obtained. The frames were subjected to the column removal in the first story and their vulnerability to progressive collapse was investigated under nonlinear static push down analysis. In the present research, parametric study including change in the number of stories, span length, story height, concrete compressive strength, rebar yield strength, poisson's ratio and damping ratio of the structure in the progressive collapse of the frames was performed based on the sensitivity and robustness indexes. The results showed that increasing the number of stories from 5 to 20 story, reducing the span length from 5.5 to 3 m, reducing the story height from 4.45 to 3.20 m, increasing the concrete compressive strength from 21.3 to 51.3 MPa, increasing the rebar yield strength from 234 to 350 MPa, increasing the Poisson's ratio from 0.12% to 0.25% and increasing the damping ratio from 5% to 15% decreases and increases the sensitivity and robustness indexes, respectively. Thus, the condition of the frames in progressive collapse improves. Finally, the effect of simultaneous removal of several columns in the progressive collapse of the frames showed that the case 5 of the column removal has the lowest sensitivity index and the highest robustness index, thus having better conditions in progressive collapse.

کلیدواژه‌ها [English]

  • Progressive collapse
  • Column removal
  • Sensitivity index
  • Robustness index
  • Reinforced concrete frame
[1] Khizab, B., Sadeghi, A., Hashemi, S., Mehdizadeh, K. and Nasseri, H. (2021). Investigation the performance of dual systems moment-resisting frame with steel plate shear wall subjected to blast loading. Journal of Structural and Construction Engineering, 8, 102-127.
[2] Karimian, A., Armaghani, A. and Behravesh, A. (2019). Performance of low-yield strength plates in beam-column connections against progressive collapse. KSCE Journal of Civil Engineering, 23, 335-345.
[3] Kiakojouri, F., Sheidaii, M.R., De Biagi, V. and Chiaia, B. (2020). Progressive collapse assessment of steel moment-resisting frames using static- and dynamic-incremental analyses. Journal of Performance of Constructed Facilities, 34, 1-13.
[4] Rezaie, F., Fakhradini, S. and Ghahremannejad, M. (2018). Numerical evaluation of progressive collapse potential in reinforced concrete buildings with various floor plans due to single column removal. Civil Engineering Infrastructures Journal, 51, 405-424.
[5] Sahebalzaman, M.S., Sheidaii, M.R. and Salmasi, A. (2021). Effects of plastic hinges modelling of fully restrained connections in the progressive collapse resistance of steel moment frames. Journal of Structural and Construction Engineering, 8, 327-342.
[6] Panahi, S. and Zahrai, S.M. (2021). Performance of typical plan concrete buildings under progressive collapse. Structures, 31, 1163-1172.
[7] GSA. (2013). Alternate path analysis and design guidelines for progressive collapse resistance. General Services Administration, Washington, D.C.
[8] GSA. (2016). Alternate path analysis and design guidelines for progressive collapse resistance revision 1. General Services Administration, Washington, D.C.
[9] UFC. 4-010-01 (2013). DoD minimum antiterrorism standards for buildings. Unified facilities criteria, Washington, D.C.
[10] UFC. 4-023-03 (2016). Design of buildings to resist progressive collapse. Unified facilities criteria, Washington, D.C.
[11] Yi, W.J., Yi, F. and Zhou, Y. (2021). Experimental studies on progressive collapse behavior of RC frame structures: Advances and future needs. International Journal of Concrete Structures and Materials, 15, 1-23.
[12] Alshaikh, I.M.H., Abadel, A.A. and Alrubaidi, M. (2022). Precast RC structures’ progressive collapse resistance: Current knowledge and future requirements. Structures, 37, 338-352.
[13] kheyroddin, A., Sharbatdar, M.K. and Farahani, A. (2019). Effect of structural height on the location of key element in progressive collapse of RC structures. Civil Engineering Infrastructures Journal, 52, 41-58.
[14] Farahani, A., Kheyroddin, A. and Sharbatdar, M.K. (2018). Finding critical element in the progressive collapse of RC structures using sensitivity analysis. Civil Engineering Journal, 4, 3038-3057.
[15] Gu, X.L., Zhang, B., Wang, Y. and Wang, X.L. (2021). Experimental investigation and numerical simulation on progressive collapse resistance of RC frame structures considering beam flange effects. Journal of Building Engineering, 42, 102797.
[16] Ashrafi, H.R. and Hassanzadeh, S.A. (2018). Investigation of progressive collapse in reinforced concrete frames, considering end rigid zones and various scenarios for column removal duration. Journal of Structural and Construction Engineering, 5, 66-84.
[17] Soleymani, A. and Esfahani, M.R. (2019). Effect of concrete strength and thickness of flat slab on preventing of progressive collapse caused by elimination of an internal column. Journal of Structural and Construction Engineering, 6, 24-40.
[18] Qiang, H., Yang, J., Feng, P. and Qin, W. (2020). Kinked rebar configurations for improving the progressive collapse behaviours of RC frames under middle column removal scenarios. Engineering Structures, 211, 110425.
[19] Tao, Y. and Huang, Yuan. (2022). Numerical investigation on progressive collapse resistance of post-tensioned precast concrete beam-column assemblies under a column-loss scenario. Engineering Structures, 251, 113528.
[20] Qian, K., Lan, D.Q., Li, S.K. and Fu, F. (2021). Effects of infill walls on load resistance of multi-story RC frames to mitigate progressive collapse. Structures, 33, 2534-2545.
[21] Elsanadedy, H.M. and Abadel, A.A. (2022). High-fidelity FE models for assessing progressive collapse robustness of RC ordinary moment frame (OMF) buildings. Engineering Failure Analysis, 136, 106228.
[22] Lin, K., Chen, Z., Li, Y. and Lu, X. (2022). Uncertainty analysis on progressive collapse of RC frame structures under dynamic column removal scenarios. Journal of Building Engineering, 46, 103811.
[23] Parisi, F. and Scalvenzi, M. (2020). Progressive collapse assessment of gravity-load designed European RC buildings under multi-column loss scenarios. Engineering Structures, 209, 110001.
[24] Tan, Z., Zhong, W., Tian, L., Zheng, Y., Meng, B. and Duan, S. (2021). Numerical study on collapse-resistant performance of multi-story composite frames under a column removal scenario. Journal of Building Engineering, 44, 102957.
[25] Yu, J., Gan, Y.P., Wu, J. and Wu, H. (2019). Effect of concrete masonry infill walls on progressive collapse performance of reinforced concrete infilled frames. Engineering Structures, 191, 179-193.
[26] Zhang, Q., Zhao, Y.G., Kolozvari, K. and Xu, L. (2020). Simplified model for assessing progressive collapse resistance of reinforced concrete frames under an interior column loss. Engineering Structures, 215, 110688.
[28] Qian, K., Cheng, J.F., Weng, Y.H. and Fu, F. (2021). Effect of loading methods on progressive collapse behavior of RC beam-slab substructures under corner column removal scenario. Journal of Building Engineering, 44, 103258.
[29] Prakash, M. and Satyanarayanan, K.S. (2021). Experimental study on progressive collapse of reinforced concrete frames under a corner column removal scenario. Materials Today: Proceedings, 40, S69-S74.
[30] Karimiyan, S. (2020). Seismic progressive collapse evaluation in 3 story reinforced concrete buildings due to inner column removal. Journal of Structural and Construction Engineering, 7, 206-226.
[31] Yaghoubi, M., Aghayari, R. and Hashemi, S. (2021). Investigation of progressive collapse in reinforced concrete buildings with slab-wall structural system. Journal of Rehabilitation in Civil Engineering, 9, 40-60.
[32] Havaei, G. and Bayat, E. (2017). The structural response and manner of progressive collapse in RC buildings under the blast and provide approaches to retrofitting columns against blast. Journal of Structural and Construction Engineering, 4, 81-100.
[33] Qian, K., Lan, D.Q., Li, S.K. and Fu, F. (2021). Effects of infill walls on load resistance of multi-story RC frames to mitigate progressive collapse. Structures, 33, 2534-2545.
[34] Feng, F.F., Hwang, H.J., Kang, S.M. and Yi, W.J. (2022). Multilinear model for progressive collapse response of reinforced concrete frames under penultimate column removal scenario. Journal of Building Engineering, 47, 103850.
[35] Qian, K., Weng, Y.H., Fu, F. and Deng, X.F. (2021). Numerical evaluation of the reliability of using single-story substructures to study progressive collapse behaviour of multi-story RC frames. Journal of Building Engineering, 33, 101636.
[36] Mucedero, G., Brunesi, E. and Parisi, F. (2020). Nonlinear material modelling for fibre-based progressive collapse analysis of RC framed buildings. Engineering Failure Analysis, 118, 104901.
[37] Scalvenzi, M., Gargiulo, S., Freddi, F. and Parisi, F. (2022). Impact of seismic retrofitting on progressive collapse resistance of RC frame structures. Engineering Failure Analysis, 131, 1-19.
[38] Elsanadedy, H.M. and Abadel, A.A. (2022). High-fidelity FE models for assessing progressive collapse robustness of RC ordinary moment frame (OMF) buildings. Engineering Failure Analysis, 136, 1-34.
[39] Azim, I., Yang, J., Bhatta, S., Wang, F. and Liu, Q. (2020). Factors influencing the progressive collapse resistance of RC frame structures. Journal of Building Engineering, 27, 1-20.
[40] Li, S., Shan, S., Zhai, C. and Xie, L. (2016). Experimental and numerical study on progressive collapse process of RC frames with full-height infill walls. Engineering Failure Analysis, 59, 57-68.
[41] Mander, J.B., Priestley, M.J.N. and Park, R. (1988). Theoretical stress-strain model for confined concrete. Journal of Structural Engineering, 114, 1804-1826.
[42] Martinez-Rueda, J.E. and Elnashai, A.S. (1997). Confined concrete model under cyclic load. Materials and Structures, 30, 139-147.
[43] European Committee for Standardization. (2004a). EN 1998-1-5:2004, Eurocode 8: Design of structures for earthquake resistance – Part 1-5: Specific rules for concrete buildings. Belgium, Brussels: European Committee for Standardization.
[44] European Committee for Standardization. (2004b). EN 1992-1-1:2004, Eurocode 2: Design of concrete structures – Part 1-1: General rules and rules for buildings. Belgium, Brussels: European Committee for Standardization.
[45] Paulay, T. and Priestley, M.J.N. (1992). Seismic design of reinforced concrete and masonry buildings. John Wiley & Sons Inc., 1-744.
[46] Barney, G. (2003). Vertical transportation in tall buildings. Elevator World, 51, 66-75.
[47] Stafford Smith, B. and Coull, A. (1991). Tall building structures: analysis and design. New Jersey: Wiley, 1-552.
[48] Krawinkkler, H. and Nassar, A.A. (1992). Seismic design based on ductility and cumulative damage demands and capacities. Nonlinear seismic analysis and design of reinforced concrete buildings (Edited by Fajfar, P. and Krawinkler, H.). London: Elsevier Applied Science, 95-104.
[49] Gholampoor, S., Vaseghi Amiri, J., Naseri, A. and Rezayi, S. (2018). Effect of eliminating the column on progressive collapse on seismic performance in dual steel structures. Journal of Structural and Construction Engineering, 5, 5-27.
[50] El-Ariss, B., Elkholy, S. and Shehada, A. (2022). Benchmark numerical model for progressive collapse analysis of RC beam-column sub-assemblages. Buildings, 12, 122-126.
[51] Han, Q., Liu, M., Lu, Y. and Wang, C. (2015). Progressive collapse analysis of large-span reticulated domes. International Journal of Steel Structures, 15, 261-269.
[52] Ito, T., Ohi, K. and Li, Z. (2005). A sensitivity analysis related to redundancy on framed structures subjected to vertical loads. Journal of structural and construction engineering: transactions of AIJ, 70, 145-151.
[53] Arjomandi, K., Estekanchi, H. and Vafai, A. (2009). Correlation between structural performance levels and damage indexes in steel frames subjected to earthquakes. Scientia Iranica, 16, 147-155.
[54] Li, Y., Lu, X., Guan, H. and Ren, P. (2016). Numerical investigation of progressive collapse resistance of reinforced concrete frames subject to column removals from different stories. Advances in Structural Engineering, 19, 314-326.
[55] Sasani, M., Bazan, M. and Sagiroglu, S. (2007). Experimental and analytical progressive collapse evaluation of actual reinforced concrete structure. ACI Structural Journal, 104, 731-739.
[56] Abdelwahed, B. (2019). A review on building progressive collapse, survey and discussion. Case Studies in Construction Materials, 11, e00264.
[57] Li, Y., Lu, X., Guan, H. and Ye, L. (2011). An improved tie force method for progressive collapse resistance design of reinforced concrete frame structures. Engineering Structures, 33, 2931-2942.
[58] Brunesi, E. and Nascimbene, R. (2014). Extreme response of reinforced concrete buildings through fiber force-based finite element analysis. Engineering Structures, 69, 206-215.
[59] Fascetti, A., Kunnath, S.K. and Nisticò, N. (2015). Robustness evaluation of RC frame buildings to progressive collapse. Engineering Structures, 86, 242-249.
[60] Brunesi, E. and Parisi, F. (2017). Progressive collapse fragility models of European reinforced concrete framed buildings based on pushdown analysis. Engineering Structures, 152, 579-596.
[61] Parisi, F., Scalvenzi, M. and Brunesi, E. (2019). Performance limit states for progressive collapse analysis of reinforced concrete framed buildings. Structural Concrete, 20, 68-84.