مطالعه عددی رفتار دیوارهای برشی فولادی با حلقه های دایروی متحدالمرکز تحت بارگذاری چرخه ای

نوع مقاله : علمی - پژوهشی

نویسندگان

1 دانشجوی دکتری، گروه مهندسی عمران، دانشکده فنی و مهندسی، دانشگاه آزاد اسلامی واحد نور، نور، ایران

2 استادیار، گروه مهندسی عمران، دانشکده فنی و مهندسی، دانشگاه آزاد اسلامی واحد نور، نور، ایران

3 استادیار، دانشکده مهندسی عمران، دانشگاه صنعتی نوشیروانی بابل، بابل، ایران

چکیده

دیوارهای برشی فولادی از مهم‌ترین و پرکاربردترین سیستم‌های باربر جانبی محسوب می‌شوند. اما ضعف عمده دیوارهای برشی فولادی در کمانش زودهنگام در نسبت‌های دریفت پائین است که این امر روی ظرفیت جذب انرژی و عملکرد کلی سیستم تاثیر می-گذارد. برای رفع این معضل، دو نوع از دیوارهای برشی فولادی تحت اثر بارگذاری چرخه‌ای با استفاده از روش المان محدود مورد بررسی قرار گرفتند. در نوع اول، حلقه‌های متعدد استفاده شده است و در نوع دوم، سیستم جدیدی از دیوارهای برشی فولادی دارای حلقه‌های دایروی متّحدالمرکز معرفی شده است. پارامترهای متعددی از قبیل تنش تسلیم مصالح ورق فولادی دیوار برشی، ضخامت ورق فولادی و عرض حلقه‌ها در تحلیل‌های استاتیکی غیرخطی در نظر گرفته شدند. در ابتدا مدل عددی سه بعدی با استفاده از سه دسته دیوار برشی فولادی آزمایشگاهی اعتبارسنجی شد و میزان اختلاف نتایج بین مدل‌های عددی و آزمایشگاهی کمتر از 5 درصد در تمام موارد مشاهده شد. نتایج مدل‌های عددی نشان دادند که دیوار برشی فولادی کامل در نسبت دریفت 2/0 درصد دچار کمانش برشی می‌شود و رفتار هیسترزیس آن دارای باریک‌شدگی می‌باشد. اما در دو دسته دیوار برشی فولادی پیشنهادی، رفتار هیسترزیس کامل و پایدار است و در اکثر موارد تا نسبت دریفت 6 درصد افت ظرفیت مشاهده نشده است. همچنین در بیشتر مدل‌های عددی، سختی مماسی در هر سیکل تقریبا ثابت باقی می‌ماند. در پایان، برای نمونه دیوار برشی فولادی پیشنهادی، رابطه‌ای برای تعیین ظرفیت برشی دیوار فولادی نسبت به ضریب لاغری دیوار ارائه شد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Numerical study of steel plate shear wall with concentric circular rings under cyclic loading

نویسندگان [English]

  • Ali Akbar Farrokhi 1
  • Sepideh Rahimi 2
  • morteza hosseinali beygi 3
  • Mohamad Hoseinzadeh 2
1 PhD Candidate, Department of Civil Engineering, School of Engineering, Islamic Azad University Nour Branch, Nour, Iran
2 Assistant Professor, Department of Civil Engineering, School of Engineering, Nour Branch, Islamic Azad University, Nour, Iran
3 Assistant Professor , Department of Civil Engineering,, Babol Noshirvani University of Technology, Babol, Iran.
چکیده [English]

Steel plate shear walls (SPSWs) are one of the most important and widely used lateral load-bearing systems. The reason for this is easier execution than reinforced concrete (RC) shear walls, faster construction time, and lower final weight of the structure. However, the main drawback of SPSWs is premature buckling in low drift ratios, which affects the energy absorption capacity and global performance of the system. To address this problem, two groups of SPSWs under cyclic loading were investigated using the finite element method (FEM). In the first group, several series of circular rings have been used and in the second group, a new type of SPSW with concentric circular rings (CCRs) has been introduced. Numerous parameters include in yield stress of steel plate wall materials, steel panel thickness, and ring width were considered in nonlinear static analysis. At first, a three-dimensional (3D) numerical model was validated using three sets of laboratory SPSWs and the difference in results between numerical models and experimental specimens was less than 5% in all cases. The results of numerical models revealed that the full SPSW undergoes shear buckling at a drift ratio of 0.2% and its hysteresis behavior has a pinching in the middle part of load-drift ratio curve. Whereas, in the two categories of proposed SPSWs, the hysteresis behavior is complete and stable, and in most cases no capacity degradation of up to 6% drift ratio has been observed. Also, in most numerical models, the tangential stiffness remains almost constant in each cycle. Finally, for the innovative SPSW, a relationship was suggested to determine the shear capacity of the proposed steel wall relative to the wall slenderness coefficient.

کلیدواژه‌ها [English]

  • Steel plate shear wall Concentric circular rings
  • Shear capacity
  • Energy absorption
  • Shear buckling
  • Slenderness ratio
  • Driver, R. G., and University of Alberta. Dept. of Civil and Environmental Engineering. (1997). "Seismic behaviour of steel plate shear walls", (Doctoral dissertation, University of Alberta, Canada).
  • Vian, D., and Bruneau, M. (2005). "Testing of special LYS steel plate shear walls", Technical Report MCEER-05-0010, University at Buffalo, State University of New York.
  • Roberts, T. M., and Sabouri-Ghomi, S. (1992). "Hysteretic characteristics of unstiffened perforated steel plate shear panels", Thin-Walled Structures, 14(2), 139-151.
  • Cortes, G., and Liu, J. (2011). "Experimental evaluation of steel slit panel–frames for seismic resistance", Journal of Constructional Steel Research67(2), 181-191.
  • Formisano, A., and Mazzolani, F. M. (2016). "Numerical non-linear behaviour of Aluminium Perforated Shear Walls: A parametric study", Key Engineering Materials, 710, 250-255, Trans Tech Publications Ltd.
  • Vian, D. (2005). "Steel plate shear walls for seismic design and retrofit of building structures", State University of New York at Buffalo.
  • Moghimi, H., and Driver, R. G. (2011). "Effect of regular perforation patterns on steel plate shear wall column demands", Structures Congress 2011,2917-2928.
  • Valizadeh, H., Sheidaii, M., and Showkati, H. (2012). "Experimental investigation on cyclic behavior of perforated steel plate shear walls", Journal of Constructional Steel Research70, 308-316.
  • Formisano, A., Sheidaii, M. R., Ahmadi, H. M., and Fabbrocino, F. (2018). "Numerical calibration of experimental tests on perforated Steel Plate Shear Walls: influence of the tightening torque in the plate-frame members bolted connections", AIP Conference Proceedings, 1978(1), p. 450005, AIP Publishing LLC.
  • Barkhordari, M. A., Hosseinzadeh, S. A., and Seddighi, M. (2014). "Behavior of steel plate shear walls with stiffened full-height rectangular openings", Asian Journal of Civil Engineering15(5), 741-759.
  • Sabouri-Ghomi, S., and Mamazizi, S. (2015). "Experimental investigation on stiffened steel plate shear walls with two rectangular openings", Thin-Walled Structures86, 56-66.
  • Purba, R., and Bruneau, M. (2009). "Finite-element investigation and design recommendations for perforated steel plate shear walls", Journal of Structural Engineering135(11), 1367-1376.
  • Hitaka, T., and Matsui, C. (2003). "Experimental study on steel shear wall with slits", Journal of Structural Engineering129(5), 586-595.
  • Formisano, A., and Lombardi, L. (2018). "Low yield metals and perforated steel shear walls for seismic protection of existing RC buildings", Cogent Engineering5(1), 1525813.
  • Formisano, A., Ahmadi, H. M., and Mazzolani, F. M. (2018). "Ductility and behaviour factor of RC frame-perforated SPSW dual systems", Key Engineering Materials, 763, 835-845, Trans Tech Publications Ltd
  • Monsef Ahmadi, H., Sheidaii, M. R., Boudaghi, H., and De Matteis, G. (2020). "Experimental and numerical study on largely perforated steel shear plates with rectangular tube–shaped links", Advances in Structural Engineering23(15), 3307-3322.
  • Ahmadi, H. M., and De Matteis, G. (2020). "Seismic performance of steel shear panels with butterfly-shaped links", International Journal of Earthquake Engineering37.
  • Zarrinkolaei, F. A., Naseri, A., and Gholampour, S. (2021). "Numerical assessment of effect of opening on behavior of perforated steel shear walls", Journal of Constructional Steel Research181, 106587.
  • Phillips, A. R., and Eatherton, M. R. (2018). "Large-scale experimental study of ring shaped–steel plate shear walls", Journal of Structural Engineering144(8), 04018106.
  • Egorova, N., Eatherton, M. R., and Maurya, A. (2014). "Experimental study of ring-shaped steel plate shear walls", Journal of Constructional Steel Research103, 179-189.
  • Systèmes, D. (2014). ABAQUS 6.14, ABAQUS/CAE user’s guide. http://130.14989(2080), v6.
  • Ramberg, W., and Osgood, W. R. (1943). "Description of stress-strain curves by three parameters", NACA Technical Notes, Report no. NACA-TN-902
  • Menegotto, M., and Pinto, P. E. (1973). "Method of anaysis for cyclically loaded reinforced concrete plane frames including changes in geometry and non-elastic behavior of elements under combined normal force and bending", Proc IABSE Symp of resistance and ultimate deformability of structures acted on by well-defined repeated loads, vol. 13. Libson, Portugal: International Association of Bridge and Structural Engineering, 15-22.
  • Alinia, M. M., and Shirazi, R. S. (2009). "On the design of stiffeners in steel plate shear walls", Journal of Constructional Steel Research65(10-11), 2069-2077.
  • Salimi, S. M., Rahimi, S., Hoseinzadeh, M., Kontoni, D. P. N., and Ebadi-Jamkhaneh, M. (2021). "Numerical 3D Finite Element Assessment of Bending Moment-Resisting Frame Equipped with Semi-Disconnected Steel Plate Shear Wall and Yielding Plate Connection", Metals11(4), 604.
  • Chen, S. J., and Jhang, C. (2006). "Cyclic behavior of low yield point steel shear walls", Thin-walled structures44(7), 730-738.
  • Applied Technology Council. (1992). “Guidelines for cyclic seismic testing of components of steel structures”, ATC-24.