بررسی خواص مکانیکی و ریزساختار خمیر سیمان حاوی گرافن بر پایه سورفکتانت

نوع مقاله : علمی - پژوهشی

نویسندگان

1 استادیار، دانشکده مهندسی عمران، آب و محیط‌زیست، دانشگاه شهید بهشتی، تهران، ایران.

2 دانشجوی دکتری، دانشکده مهندسی عمران، آب و محیط‌زیست، دانشگاه شهید بهشتی، تهران، ایران.

چکیده

اخیراً عملکرد عالی مواد مبتنی بر گرافن توجه محققان مهندسی عمران را به استفاده از آن در مخلوط‌های سیمانی جلب کرده است. با این حال، استفاده از گرافن به دلیل هزینه بالای آن و پدیده انباشتگی در ترکیبات سیمانی با موانعی روبرو است. در این راستا، انتخاب یک عامل پخش کننده با قابلیت جداسازی مؤثر لایه‌های گرافن و همچنین بهبود خواص مکانیکی و نفوذناپذیری ترکیبات سیمانی ضروری است. در این مطالعه، تأثیر سورفکتانت به‌عنوان عامل جدا کننده گرافن از گرافیت بر خواص مکانیکی و ریزساختار خمیر سیمان حاوی محلول گرافن تولید شده مورد بررسی قرار گرفت. بررسی ریزساختار گرافن تولید شده نشان می‌دهد که تولید گرافن از طریق لایه برداری سورفکتانت منجر به تکه‌تکه شدن و پاره شدن دانه‌های گرافیت می‌گردد. پس از 7روز نگهداری مقاومت فشاری خمیر سیمان حاوی گرافن تولید شده بر مبنای اختلاط 5 گرم در لیتر گرافیت و 56/0 گرم در لیتر سورفکتانت به میزان 66/28٪ نسبت به نمونه شاهد افزایش داشته است. نتایج کریستوگرافی و ترموگراویمتری نشان داد که گرافن به دلیل اثر هسته‌زایی در ماتریس سیمانی باعث تسریع در روند تولید CH و C-S-H می‌گردد. همچنین ترکیب گرافن و سورفکتانت در خمیر سیمان منجر به کاهش 6/18٪ حفرات گردید. نتایج این تحقیق نشان می‌دهد که گرافن پراکنده در آب تولید شده توسط 56/0 گرم در لیتر سورفکتانت این پتانسیل را دارد که به‌عنوان یک افزودنی نوین در مخلوط‌های مبتنی بر سیمان استفاده گردد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Study of mechanical properties and microstructure of cement paste containing graphene based on surfactant

نویسندگان [English]

  • Kianoosh Samimi 1
  • Mahyar Pakan 2
1 Assistance Professor, Faculty of Civil, Water and Environmental Engineering, Shahid Beheshti University, Tehran, Iran.
2 Ph.D. Student,, Faculty of Civil, Water and Environmental Engineering, Shahid Beheshti University, Tehran, Iran
چکیده [English]

Recently, the excellent performance of graphene-based materials has attracted civil engineering researchers in its application in cementitious mixtures. However, the application of graphene is hindered by its high cost and the agglomeration phenomenon in cementitious mixtures. In this regard, it is necessary to choose a dispersing agent with the ability to effectively separate graphene layers as well as improve mechanical properties and impermeability of cementitious mixtures. In this study, the effect of surfactant as a graphene separating agent from graphite on the mechanical properties and microstructure of cement paste containing water-dispersed graphene was investigated. The microstructure of the produced graphene reveals that the process of manufacturing graphene by peeling the surfactant leads to fragmentation and rupture of graphite. After 7 days of curing, the compressive strength of cement paste containing a mixture of 5 g / l graphite and 0.56 g / l surfactant increased by 28.66% compared to the control mixture. The crystallography and thermogravimetric results showed that graphene accelerates the formation of CH and C-S-H due to its nucleating effect in the cement matrix. Furthermore, the incorporation of graphene and surfactant into cement paste reduced the voids by 18.6%. This study shows that graphene dispersed in water produced by 0.56 g / l surfactant has the potential to be used as a novel additive in cement-based mixtures.

کلیدواژه‌ها [English]

  • Microstructure
  • Surfactant
  • Graphene
  • Graphite
  • Compressive Resistance
[1]        Samimi, K., Kamaragi, G.R.D. and Le Roy, R. (2019) , Microstructure, thermal analysis and chloride penetration of self-compacting concrete under different conditions, Magazine of Concrete Research, Thomas Telford Ltd. Vol. 71, pp. 126–43. https://doi.org/10.1680/jmacr.17.00367
[2]        Farahani, A. and Zanjirani Farahani, H. (2022) , Laboratory Study on Pozzolanic Concrete oriented to Durability Approach of RC Barriers (New Jersey), Journal of Structural and Construction Engineering,. https://doi.org/10.22065/jsce.2022.316266.2653
[3]        Babaei, Y., Ghasemi, S.A.M. and Zandi, Y. (2021) , Comparative Evaluation of Effect of Fly Ash and Microsilica on the Development, Compressive Strength and Electrical Resistance of Concretes Exposed Chlorinated Waters, Journal of Structural and Construction Engineering,. https://doi.org/10.22065/jsce.2021.297648.2517
[4]        Samimi, K., Estakhr, F., Mahdikhani, M. and Moodi, F. (2018) , Influence of Metakaolin and Cements Types on Compressive Strength and Transport Properties of Self-Consolidating Concrete, International Journal of Civil and Environmental Engineering, Vol. 12, pp. 243–9.
[5]        Ebrahimi Besheli, A., Samimi, K., Moghadas Nejad, F. and Darvishan, E. (2021) , Improving concrete pavement performance in relation to combined effects of freeze–thaw cycles and de-icing salt, Construction and Building Materials, Elsevier. Vol. 277, pp. 122273. https://doi.org/10.1016/j.conbuildmat.2021.122273
[6]        Samimi, K. and Shirzadi Javid, A.A. (2021) , Magnesium Sulfate (MgSO4) Attack and Chloride Isothermal Effects on the Self-consolidating Concrete Containing Metakaolin and Zeolite, Iranian Journal of Science and Technology - Transactions of Civil Engineering, Springer. Vol. 45, pp. 165–80. https://doi.org/10.1007/s40996-020-00398-6
[7]        Samimi, K., Kamali-Bernard, S., Akbar Maghsoudi, A., Maghsoudi, M. and Siad, H. (2017) , Influence of pumice and zeolite on compressive strength, transport properties and resistance to chloride penetration of high strength self-compacting concretes, Construction and Building Materials, Elsevier. Vol. 151, pp. 292–311. https://doi.org/10.1016/j.conbuildmat.2017.06.071
[8]        Kianoosh Samimi, Siham Kamali-Bernard, A.A.M. (2018) , Resistance to Chloride Penetration of High Strength Self-Compacting Concretes: Pumice and Zeolite Effect, International Journal of Civil and Environmental Engineering, Vol. 3, pp. 250–9.
[9]        Pachideh, G., Gholhaki, M., Moshtagh, A. and Felaverjani, M.K. (2019) , An Investigation on the Effect of High Temperatures on the Mechanical Properties and Microstructure of Concrete Containing Multiwalled Carbon Nanotubes, Materials Performance and Characterization, ASTM International. Vol. 8, pp. 503–17.
[10]      Pachideh, G., Gholhaki, M. and Moshtagh, A. (2019) , On the post-heat performance of cement mortar containing silica fume or Granulated Blast-Furnace Slag, Journal of Building Engineering, Elsevier. Vol. 24, pp. 100757.
[11]      Gong, K., Pan, Z., Korayem, A.H., Qiu, L., Li, D., Collins, F. et al. (2015) , Reinforcing Effects of Graphene Oxide on Portland Cement Paste, Journal of Materials in Civil Engineering, American Society of Civil Engineers. Vol. 27, pp. A4014010. https://doi.org/10.1061/(asce)mt.1943-5533.0001125
[12]      Li, X., Lu, Z., Chuah, S., Li, W., Liu, Y., Duan, W.H. et al. (2017) , Effects of graphene oxide aggregates on hydration degree, sorptivity, and tensile splitting strength of cement paste, Composites Part A: Applied Science and Manufacturing, Elsevier. Vol. 100, pp. 1–8. https://doi.org/10.1016/j.compositesa.2017.05.002
[13]      Pan, Z., He, L., Qiu, L., Korayem, A.H., Li, G., Zhu, J.W. et al. (2015) , Mechanical properties and microstructure of a graphene oxide–cement composite, Cement and Concrete Composites, Elsevier. Vol. 58, pp. 140–7. https://doi.org/10.1016/j.cemconcomp.2015.02.001
[14]      Seddighi, F., Pachideh, G. and Salimbahrami, S.B. (2021) , A study of mechanical and microstructures properties of autoclaved aerated concrete containing nano-graphene, Journal of Building Engineering, Elsevier. Vol. 43, pp. 103106.
[15]      Wang, Q., Wang, J., Lu, C.X., Liu, B.W., Zhang, K. and Li, C.Z. (2015) , Influence of graphene oxide additions on the microstructure and mechanical strength of cement, Xinxing Tan Cailiao/New Carbon Materials, Elsevier. Vol. 30, pp. 349–56. https://doi.org/10.1016/s1872-5805(15)60194-9
[16]      Du, H. and Pang, S.D. (2015) , Enhancement of barrier properties of cement mortar with graphene nanoplatelet, Cement and Concrete Research, Elsevier. Vol. 76, pp. 10–9. https://doi.org/10.1016/j.cemconres.2015.05.007
[17]      Krystek, M., Ciesielski, A. and Samorì, P. (2021) , Graphene-Based Cementitious Composites: Toward Next-Generation Construction Technologies, Advanced Functional Materials, Wiley Online Library. Vol. 31, pp. 2101887. https://doi.org/10.1002/adfm.202101887
[18]      Lotya, M., King, P.J., Khan, U., De, S. and Coleman, J.N. (2010) , High-concentration, surfactant-stabilized graphene dispersions, ACS Nano, ACS Publications. Vol. 4, pp. 3155–62. https://doi.org/10.1021/nn1005304
[19]      Peyvandi, A., Soroushian, P., Balachandra, A.M. and Sobolev, K. (2013) , Enhancement of the durability characteristics of concrete nanocomposite pipes with modified graphite nanoplatelets, Construction and Building Materials, Elsevier. Vol. 47, pp. 111–7. https://doi.org/10.1016/j.conbuildmat.2013.05.002
[20]      Peng, H., Ge, Y., Cai, C.S., Zhang, Y. and Liu, Z. (2019) , Mechanical properties and microstructure of graphene oxide cement-based composites, Construction and Building Materials, Elsevier. Vol. 194, pp. 102–9. https://doi.org/10.1016/j.conbuildmat.2018.10.234
[21]      Qureshi, T.S. and Panesar, D.K. (2020) , Nano reinforced cement paste composite with functionalized graphene and pristine graphene nanoplatelets, Composites Part B: Engineering, Elsevier. Vol. 197, pp. 108063. https://doi.org/10.1016/j.compositesb.2020.108063
[22]      Yang, H., Monasterio, M., Cui, H. and Han, N. (2017) , Experimental study of the effects of graphene oxide on microstructure and properties of cement paste composite, Composites Part A: Applied Science and Manufacturing, Elsevier. Vol. 102, pp. 263–72. https://doi.org/10.1016/j.compositesa.2017.07.022
[23]      Chen, Z., Zhou, X., Wang, X. and Guo, P. (2018) , Mechanical behavior of multilayer GO carbon-fiber cement composites, Construction and Building Materials, Elsevier. Vol. 159, pp. 205–12. https://doi.org/10.1016/j.conbuildmat.2017.10.094
[24]      Du, H., Gao, H.J. and Pang, S.D. (2016) , Improvement in concrete resistance against water and chloride ingress by adding graphene nanoplatelet, Cement and Concrete Research, Elsevier. Vol. 83, pp. 114–23. https://doi.org/10.1016/j.cemconres.2016.02.005