ارزیابی بهینه سازی بهره وری انرژی بر اساس تحلیل انرژی چرخه عمر ساختمان (مطالعه موردی؛ یک ساختمان آموزشی در شهر تهران)

نوع مقاله : علمی - پژوهشی

نویسندگان

1 دانشجوی دکتری، دانشکده مهندسی عمران، واحد تهران جنوب، دانشگاه آزاد اسلامی،تهران، ایران

2 دانشیار، دانشکده مهندسی عمران، واحد تهران جنوب، دانشگاه آزاد اسلامی،تهران، ایران

3 استادیار، دانشکده مهندسی صنایع، واحد الکترونیکی، دانشگاه آزاد اسلامی، تهران، ایران

4 استادیار، دانشکده مهندسی عمران، واحد تهران جنوب، دانشگاه آزاد اسلامی،تهران، ایران

چکیده

هنگامیکه جنبه بهینه سازی بهره وری انرژی در مدیریت پروژه های ساختمانی مد نظر قرار داده شود، یکی از بهترین معیارهای ارزیابی، تحلیل انرژی چرخه عمر ساختمان، شامل انرژی نهفته در ساخت‌وساز و انرژی بهره برداری در طول عمر ساختمان است. پژوهش حاضر شامل دو گام؛ 1- مطالعه کتابخانه ای، آماری و توصیفی (انتخاب گزینه‌های مناسب جهت بهینه سازی انرژی چرخه عمر ساختمان) و 2- مطالعه موردی (تحلیل انرژی نهفته ساخت‌وساز و بهره‌برداری ساختمان از طریق مدلسازی در نرم افزار شبیه ساز انرژی دیزاین بیلدر) است. نتایج تحلیل انرژی چرخه عمر یک ساختمان آموزشی واقعی در شهر تهران با طول عمر 50 سال، با در نظر گرفتن گرمایش زمین، در سه حالت پایه‌ی موجود، بهینه و بهینه‌ی دارای بام سبز نشان داد؛ که مقدار انرژی چرخه عمر ساختمانهای مورد مطالعه بترتیب معادل 51.86، 44.82 و 43.89 گیگاژول بر متر مربع می‌باشد. همچنین مصرف انرژی سالیانه در دوره بهره برداری ساختمان آموزشی پایه‌ی موجود در اقلیم تهران، معادل 0.80 گیگاژول بر متر مربع برآورد گردید، گرچه این مقدار در بازه مقادیر ارائه شده در تحقیقات جهانی قرار داشت ولی مقدار مصرف انرژی دوره بهره‌برداری این ساختمان در مقایسه با ارقام جهانی مقدار زیاد و قابل توجهی می‌باشد. نتایج کلی حاکی از آن بود؛ که مصرف انرژی در طول عمر ساختمان مورد مطالعه، در حالت بهینه و بهینه‌ی دارای بام سبز نسبت به ساختمان پایه موجود، بترتیب حدود 24220 گیگاژول (معادل 3958 بشکه نفت خام) و 27420 گیگاژول (معادل4480 بشکه نفت خام) کمتر می‌باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Evaluation of energy efficiency optimization based on building Life Cycle Energy Analysis (Case study; an educational building in Tehran)

نویسندگان [English]

  • saeid Giahchy 1
  • seyed azim hosseini 2
  • Mahdieh Akhbari 3
  • Ebrahim Safa 4
  • Abbas Akbarpour 4
1 Ph.D. Student, Department of Civil Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran.
2 Associate Professor, Department of Civil Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran
3 Assistant Professor, Department of Industrial Engineering, Electronic Branch, Islamic Azad University, Tehran, Iran
4 Assistant Professor, Department of Civil Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran
چکیده [English]

When considering energy efficiency optimization in construction project management, one of the best evaluation criteria is the building life cycle energy analysis; that, includes the embodied energy in the building and the operating energy during the life of the building. The present study consists of two steps; 1- Library, statistical and descriptive study (selection of suitable options for life cycle energy optimization of buildings) and 2- Case study (analysis of embodied energy of construction and operation of the building through modeling in energy simulator software design Builder). The results of the life cycle energy analysis of a real educational building in Tehran with a lifespan of 50 years, taking into account ground heating, in the three states of this building; basic available, optimal and optimal with a green roof showed; That, the amount of life cycle energy of the studied buildings is 51.86, 44.82 and 43.89 GJ / m2, respectively. Also, the annual energy consumption during the operation period of the basic educational building in Tehran was estimated to be equal to 0.80 GJ / m2, although this amount was in the range of values provided in global research, but the amount of energy consumption during the operation period of this building Compared to global cultivars, it is a large and significant amount. The overall results indicated; that, The energy consumption during the life of the studied building in the optimal and optimal with a green roof state was less about 24,220 GJ (equivalent to 3958 barrels of crude oil) and 27,420 GJ (equivalent to 4480 barrels of crude oil), respectively, compared to the existing base state.

کلیدواژه‌ها [English]

  • Energy Efficiency
  • Energy Saving
  • Life Cycle Energy
  • Builder Industry
  • Design Builder
[1] Dixit, M. Fernandez-Solis, J. Lavy, S. and Culp, C. (2010). Identification of parameters for embodied energy measurement: A literature review. Energy and Buildings, 42(8), 1238-1247.
[2] Vukotic, L. Fenner, R. and Symons, K. (2010). Assessing embodied energy of building structural elements. the Institution of Civil Engineers-Engineering Sustainability, 163(3), 147-158.
[3] Dixit, M. Culp, C. and Fernández-Solís, J. (2013). System boundary for embodied energy in buildings: A conceptual model for definition. Renewable and Sustainable Energy Reviews, 21, 153-164.
[4] Thormark, C. (2002). A low energy building in a life cycle-its embodied energy, energy need for operation and recycling potential. Building and Environment, 37, 429 – 435.
[5] Fay, R. Treloar, G. and Iyer-Raniga, U.  (2000). Life-cycle energy analysis of buildings: a case study. buildings Research & Information, 28(1), 31-41.
[6] Schultmann, F. and Sunke, N. (2007). Energy-oriented deconstruction and recovery planning. Building Research & Information, 35(6), 602-615.
[7] Yousefi, F. Gholipour Y. and Yan, W. (2017). A study of the impact of occupant behaviors on energy performance of building envelopes using occupants’ data. Energy & Buildings, 148, 182-198.
[8] Peuportier, B. (2001). Life cycle assessment applied to the comparative evaluation of single family houses in the French context. Energy and Buildings, 33(5), 443- 450.
[9] Crowther, P. (1999). Design for disassembly to recover embodied energy. in The 16th International Conference on Passive and Low Energy Architecture, Melbourne–Brisbane–Cairns.
[10] Winter, B. and Hestnes, A. (1999). Solar versus green: The analysis of a Norwegian row house. Solar Energy, 66(6), 387–393.
[11] Adalbert, K. (1997). Energy use during the life cycle of single-unit dwellings: examples. Building and Environment , 32(4), 321-329.
[12] Praseeda, K. Venkatarama Reddy, B. and Mani, M. (2016). Embodied and operational energy of urban residential buildings in India. Energy and Buildings, 110, 211-219.
[13] Venkatarama Reddy, B. and Jagadish, K. (2003). Embodied energy of common and alternative building materials and technologies. Energy and Buildings, 35, 129–137.
[14] Deng, W. Prasad, D. Osmond, P. and Li, F. (2011). Quantifying life cycle energy and carbon footprints of China’s residential small district. Journal of Green Building, 6(4), 96-111.
[15] Junnila, S. Horvath, A. and Guggemos, A. (2006), Life-cycle assessment of office buildings in Europe and the United States. Journal of Infrastructure Systems , 12(1), 10-17.
[16] Mithraratne, N. and Vale, B. (2004). Life cycle analysis model for New Zeland houses. Building and Environment, 39, 483- 492.
[17] Nassen, J. Hedenus, F. Karlsson, S. and Holmberg, J. (2012). Concrete vs wood in buildings- an energy system approach. Building and Environment, 51, 361-369.
[18] Ramesh, T; Prakash, R. and Shukla, K. (2010). Life cycle energy analysis of buildings: an overview. Energy and Buildings, 42, 1592-1600.
[19] Dixit, M. (2017). Life cycle embodied energy analysis of residential buildings: A review of literature to investigate embodied energy parameters. Renewable and Sustainable Energy Reviews, 79, 390- 413.
[20] Yousefi, F. Gholipour Y.(2018). Evaluating the energy consumption of the life of a real residential building in Tehran. Journal of Fine Arts - Architecture and Urban Planning, 23(1), 92-81. (in Persian)
[21] Forouzan, N. Hajipour, Kh. and Soltani, Ali. (2016). Investigation of latent energy consumption in residential textures: A case study of Shiraz. Naghsh-e-Jahan Quarterly, 6(1), 52-42. (in Persian)
[22] Heravi, G. Nafisi, T. and Mousavi, R. (2016). Evaluation of energy consumption during production and construction of concrete and steel frames of residential buildings. Energy and Buildings, 130, 244-252.
[23] Zolfaghari, S.A. Saadati Nasab,  M. and Norouzi Jajarm,  E.  (2014). Assessing the impact of the exterior of the building on annual energy consumption in different climates of Iran. Iranian Journal of Energy, 17(4), 69 – 80. (in Persian)
 [24] Bolattürk, A. (2008). Optimum insulation thicknesses for building walls with respect to cooling and heating degree-hours in the warmest zone of Turkey. Building and Environment, 43(6), 1055-1064.
[25] Daouas, N. (2011). A study on optimum insulation thickness in walls and energy savings in Tunisian buildings based on analytical calculation of cooling and heating transmission loads. Energy and Buildings, 88(1), 156-164.
[26] Mahdavinejad, M.J. and Fakhari, M. (2013). Stablishment of Optimum Designing Pattern in Buildings Roof Shape Based on Energy Loss. Naqsh-e-jahan, 3(2), 35-42. (in Persian)
[27] Ortiga, J. Carles Bruno, J. Coronas, A. and Grossman, I.E. (2007). Review of optimization models for the design of polygene ration systems in district heating and cooling networks. In: the 17th European Symposium on Computer Aided Process Engineering.
[28] Diakaki, C. Grigoroudis, E. and  Kolokotsa, D. (2008). Towards a multi-objective optimization approach for improving energy efficiency in buildings. Energy and Buildings, 40(9), 1747-1754.
[29] Asadi, E. Da Silva, M.G. Antunes, C.H. Dias, L. and Glicksman, L. (2014). Multi objective optimization for building retrofit: A model using genetic algorithm and artificial neural network and an application. Energy and Buildings, 81, 444-356.
[30] Diakaki, C. Grigoroudis, E. and Kolokotsa, D. (2013). Performance study of a multiobjective mathematical programming modelling approach for energy decision-making in buildings. Energy and Buildings, 59, 534-542.
[31] Antipova, E. Boer, D. Guillen-Gosalbez, G. Cabeza, L.F. and Jimenez, L. (2014). Multi-objective optimization coupled with life cycle assessment for retrofitting building. Energy and Buildings, 82, 92-99.
[32] Carreras, J. Pozo, C. Boer, D. Guillen-Gosalbez, G. Caballero, J.A. Ruiz- Femenia, R. and Jimenez, L. (2016). Systematic approach for the life cycle multi-objective optimization of buildings combining objective reduction and surrogate modeling. Energy and Buildings, 130, 506-518.
[33] Ebrahimi.S, T. Mohtashami, M. Ziaee, A. and Salehnia, N. (2011). Energy auditing of residential buildings in Mashhad and comparision of the gas consumption efficiency for different heating systems. In: the first international conference on new approaches towards energy conservation, Tehran: Amir Kabir University. (in Persian)
[34] Shahmohammadi, F. Azimi, A. and Kazemizadeh, H. S. (2006). Simulation and optimization of heating energy consumption of buildings. In: the 5th international conference on fuel conservation in building, Iran, Tehran. (in Persian)
[35] Gilani, S. and Mohammadkari, B. (2011). Investigation of Greenhouse’s Thermal Performance in Residential Buildings of Cold Climate Case Study: City of Ardebil. Modares Mechanical Engineering, 11(2), 147-157. (in Persian)
[36] Wang, F. Yoshida, H. and Ono, E. (2009). Methodology for optimizing the operation of heating/cooling plants with multi-heat-source equipments. Energy and Buildings, 41(4), 416-425.
[37] Hammond, G. and Jones, C. (2008). Inventory of Carbon and Energy (ICE). Sustainable Energy Research Team, Dept. of Mechanical Engineering, University of Bath, Bath, United Kingdom.
[38] Hammond, G. and Jones, C. (2011). Inventory of Carbon and Energy (ICE). Sustainable Energy Research Team, Dept. of Mechanical Engineering, University of Bath, Bath, United Kingdom.
[39] Mahmoodi, M. Pakari, N. and Bahrami, H. (2012). Evaluate how the green roof affects the reduction of ambient temperature. Bagh nazar Quarterly, 9(20), 73-82. (in Persian)
[40] Mahmoudpour, A. and Dehghan-Manshadi, M. (2013). Solar greenhouse thermal analysis. In: Fifth Conference on Renewable, Clean and Efficient Energy, Tehran. (in Persian)
[41] Jahanbakhshi, A. and Ahmadi nadooshan A. (2018). Simulation of passive heating solar wall and prediction the temperature by Artificial Neural Networks and Adaptive Neuro-Fuzzy model (ANFIS). Modares Mechanical Engineering, 18(2), 159-169. (in Persian)
[42] Bhardwaj, A. et al. (2019). More priorities, more problems? Decision-making with multiple energy  development and climate objectives. Energy Research & Social Science, 49(3), 143-157.
[43] Akbari, H. Hadavi, F. Zamani, M. and Alipour ,Y. (2016). Determining the appropriate directions of the building in order to receive optimal solar radiation in the city of Zanjan. Environmental Management Quarterly, 33, 155-173. (in Persian)
[44] Guzman, V.C, Cascales M.S. Espinosa, N. and Urbina, A. (2019). Life Cycle Analysis with Multi-Criteria Decision Making: A review of approaches for the sustainability evaluation of renewable energy technologies. Renewable and Sustainable Energy Reviews, 104, 343-366.
[45] Balali, A. Valipour. A. Zavadskas. E.K. and Turskis, T. (2020). Multi-Criteria Ranking of Green Materials According to the Goals of Sustainable Development. Sustainability, 12(22), 1-18.
[46] Klumbyte,  E. Bliudzius,  R. Medineckiene,  M. and Fokaides, P.A. (2021). An MCDM Model for Sustainable Decision-Making in Municipal Residential Buildings Facilities Management. Sustainability, 13(5), 1-16.
[47] National Regulations of Iran, Article 19. (2020). Energy Conservation. Tehran: Iran Development Publishing.
[48] Pullen, S. (2000). Energy used in the construction and operation of houses. Architectural Science Review, 43(2), 87-94.
[49] Gao, W; Ariyama, T; Ojima, T & Meier, A (2001), Energy impacts of recycling disassembly material in residential buildings, Energy and Buildings, Vol. 33, pp. 553-562.
[50] Ma, J. Du, G. Zhang, Z. Wang, P. and Xie, B. (2017). Life cycle analysis of energy consumption and CO2 emissions from a typical large office building in Tianjin , China. Building and Environment, 117, 36- 48.