تحلیل ریسک‌های پروژه‌های زیربنایی آب و فاضلاب مبتنی بر رویکرد مشارکت عمومی-خصوصی (3P) با تلفیق تکنیک‌های دلفی فازی (FD)، FMEA و ارزیابی مصنوعی فازی (FSE)

نوع مقاله : علمی - پژوهشی

نویسندگان

1 دانشجوی‌‍‌ دکتری مهندسی و مدیریت ساخت،‌ ‌گروه‌‍‌ مهندسی‌‍‌ عمران، واحد رودهن، دانشگاه آزاد اسلامی،‌‍‌ رودهن، ا‌‍‌یران‌

2 استادیار، دانشکده‌‍‌ عمران، دانشگاه سجاد، مشهد، ا‌‍‌یران‌

3 استادیار، گروه‌‍‌ مهندسی‌‍‌ عمران، واحد رودهن، دانشگاه آزاد اسلامی،‌‍‌ رودهن، ا‌‍‌یران‌

چکیده

در سال‌های اخیر استفاده از رویکرد مشارکت عمومی- خصوصی (3P) جهت اجرای پروژه‌های زیربنایی بسیار مورد توجه قرار گرفته است. شناسایی و تحلیل ریسک در این پروژه‌ها همواره یکی از چالش‌های اصلی این رویکرد بوده است. هدف مقاله حاضر تعیین سطوح مختلف ریسک در پروژه‌های پروژه‌های 3P آب و فاضلاب کشور ایران با استفاده از مطالعات کتابخانه‌ای و پیمایش میدانی است. با به‌کارگیری یک پروتکل سه فازه و توسعه یک روش تلفیقی تحلیل ریسک، ضمن شناسایی و تفکیک ریسک‌ها، به ارزیابی سطوح مختلف ریسک در این پروژه‌ها پرداخته شد. در فاز اول، 49 عامل ریسک شناسایی و در 6 گروه اصلی شامل ریسک‌های فنی(R1)، اقتصادی(R2)، سیاسی(R3)، قوانین(R4)، محیطی(R5) و مدیریتی(R6) تفکیک گردید. در فاز دوم جهت استخراج ریسک‌های بحرانی‌تر، به تحلیل و غربالگری ریسک‌ها با ترکیب تکنیک‌های دلفی فازی(FD) و آنالیز خطا و آثار آن(FMEA) با بهره‌گیری از نظرات خبرگان پرداخته شد. براساس نتایج، 23 عامل فرعی ریسک با مقدار RPNNormalized بیشتر از 5/0 به‌عنوان ریسک‌های بحرانی معرفی شدند. در فاز سوم با روش ارزیابی مصنوعی فازی(FSE) در ترکیب با روش FMEA، سطوح مختلف کل ریسک‌ها(ORL) تعیین شد. براساس نتایج گروه‌های ریسک R2، R1، R3،R4 ، R6 و R5 به‌ترتیب با ORL برابر 468/7، 262/7، 132/7، 992/6، 815/6 و 670/6 به‌عنوان بحرانی‌ترین گروه‌های ریسک در پروژه‌های 3P آب و فاضلاب شناسایی شدند. ریسک‌های تخصیص منابع مالی و تعهدات سرمایه‌گذار(R2-6)، عدم شفافیت مسائل اجرایی و تغییر در مشخصات طرح(R1-1)، مشکلات فرآیند نظام دولتی در انعقاد قرارداد(R3-5)، طولانی شدن زمان اخذ مجوزها و تمدید آنها(R4-6)، مدیریت، کنترل و بهره‌برداری منسجم از منابع آب(R6-8) و تغییرات آب‌وهوایی و الگوی بارندگی(R5-2) در هر یک از گروه‌های فوق به‌عنوان مهمترین عامل ریسک بحرانی تعیین گردید. درنهایت مقدار ORL پروژه‌های 3P آب و فاضلاب در کشور برابر با 077/7 تعیین شد که این موضوع بیانگر سطح ریسک کل زیاد این پروژه‌ها می‌باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Risk analysis of water and wastewater infrastructure projects based on public-private partnership (3P) approach by combining Fuzzy Delphi (FD), FMEA and artificial fuzzy assessment (FSE) techniques

نویسندگان [English]

  • Mehrdad Khoshnevis 1
  • faramarz alami 2
  • Amirpouya Sarraf 3
1 Phd Student of Engineering and Construction Management, Department of Civil Engineering, Roudehen Branch, Islamic Azad University, Roudehen, Iran
2 College of Civil, Sadjad University, Mashhad, Iran
3 Department of civil Engineering, Roudehen Branch, Islamic Azad University, Roudehen, Iran
چکیده [English]

In recent years, use of Public-Private-Partnerships(3P) approach has received much attention to implementation of infrastructure projects. Risk identification and analysis in these projects has always been one of the main challenges of this approach. The purpose of this paper is to determine the different levels of risk in 3P water and wastewater projects in Iran using library studies and field surveys. Using a three-phase protocol and developing an integrated method of risk analysis, while identifying and separating risks, different levels of risk in these projects were evaluated. In the first phase, 49 risk factors were identified and divided into 6 main groups including technical(R1), economic(R2), political(R3), legal(R4), environmental(R5) and managerial(R6) risks. In the second phase, in order to extract more critical risks, the risks were analyzed and screened by combining Fuzzy Delphi(FD) techniques and Failure Mode Analysis and Effects(FMEA) using the opinions of experts. Based on the results, 23 sub-risk factors with RPNNormalized values greater than 0.5 were identified as critical risks. In the third phase, different levels of total risks(ORL) were determined by Fuzzy synthetic evaluation (FSE) method in combination with FMEA method. Based on the results of risk groups R2, R1, R3, R4, R6 and R5 with ORL of 7.468, 7.262, 7.132, 6.992, 6.815 and 6.670, respectively, as the most critical risk groups in 3P projects were identified. Risks of allocating financial resources and investor obligations (R2-6), lack of transparency in executive issues and changes in project specifications(R1-1), problems of the government system(R3-5), prolongation of licenses and their renewal(R4-6), integrated management, control and utilization of water resources(R6-8) and climate change and rainfall pattern(R5-2) in each of the above groups were identified as the most important critical risks. Finally, the ORL of 3P projects was set at 7.077, which indicates the high level of total risk of these projects.

کلیدواژه‌ها [English]

  • Risk Analysis
  • Public-Private Partnership (3P)
  • Water and Wastewater Infrastructure Projects
  • Integrated Method Development
  • FD-FMEA-FSE Techniques
[[1]] Jensen, O. (2016), Public–private partnerships for water in Asia: a review of two decades of experience, International Journal of Water Resources Development, 33(1), pp. 4-30.
[[1]] Zhang, L.Sun, X. Xue, H. (2019), Identifying critical risks in Sponge City PPP projects using DEMATEL method: a case study of China, In Press, Accepted Manuscript, Journal of Cleaner Production, 226, 949-958.
[[1]] Zhong, L.P.J. Mol, A. Fu, T. (2008), Public-Private Partnerships in China’s Urban Water Sector, Environmental Management, 41(1), 863–877.
[[1]] Grimsey, G. and Lawis, M.K.G., (2002), Evaluating the risks of public private partnership for infrastructure project, International Journal of Project Management, 20(1), 101-118.
[[1]] Yin, H. Yuan-Fu, L. Zhao, D.M. (2015), Risk Factor Empirical Research of PPP Projects Based on Factor Analysis Method, American Journal of Industrial and Business Management, 5(6), 383-387.
[[1]] Ameyaw, E.E. and Chan, A.P.C. (2015), Identifying public–private partnership (PPP) Risks in managing water supply projects in Ghana, Journal of Facilities Management, 11(2), 152–182.
[[1]] An, X. Li, H. Wang, L. Wang, Z. Ding, J. Cao, Y. (2018), Compensation Mechanism for Urban Water Environment Treatment PPP Project in China, Journal of Cleaneer Production, 201, 246-253.
[[1]] Kayaga, S. (2008), Public–private delivery of urban water services in Africa. Proceedings of civil engineers: Management, procurement and law, 161(4), 147–155.
[[1]] Law of the Fifth Five-Year Development Plan of the Islamic Republic of Iran (2015-2011), Letter No. 73285/419 dated 10/30/2010.
[[1]] Badalians, G., Tabarestani, A., Gholipour, Y. And Mohammadi, M.R. 2009, The Role of Value Engineering in Infrastructure Implementation and Optimization: A Case Study of Hamedan Sewerage Network Project, The First National Conference on Infrastructure Engineering and Management.
[[1]] Yelin, X. Yeung, C.F.Y. Chan, A.P.C. Chan, W.M. Wang, S.Q. Ke, Y. (2010), Developing a risk assessment model for PPP projects in China: A fuzzy synthetic evaluation approach, Automation in Construction, 19 (7), 929–943.
[[1]] Hammami, M., Ruhashyankiko, J.F., Yehoue, E, B., 2006, Determinants of public-private partnerships in infrastructure, Washington, D.C: International monetary fund.
[[1]] Ke, Y.J., Wang, S.Q., Chan, A.P.C., and Lam, P.T.I., (2010). Preferred risk allocation in China's public-private partnership (PPP) projects, International Journal of Project Management, 28(5), 482–492.
[[1]] Wibowo, A. Mohamed, S. (2010), Risk critically and allocation in privatised water supply projects in Indonesia, International Journal of Project Management, 28(5), 504–513.
[[1]] Li, J., and Zou, P.X.W., (2011), Fuzzy AHP-Based Risk Assessment Methodology for PPP Projects, Technical Note, ASCE / Journal of Construction Engineering and Management, Vol. 137, No. 1, pp. 1205-1209.
[[1]] Samer, E.A. Badran, Y. (2013), Risk Decision Support System for Public Private Partnership projects in Egypt. International Journal of Engineering and Innovative Technology (IJEIT), 3(2), 479 -485.
[[1]] Liu, T., Wang, Y., Wilkinson, S., (2016), Identifying critical factors affecting the effectiveness and efficiency of tendering processes in Public–Private Partnerships (PPPs): A comparative analysis of Australia and China, International Journal of Project Management, 34, 701–716.
[[1]] Tong, Y. Long, R. Cui, X. Zhu, D. Hong, C. (2017), Application of the public–private partnership model to urban sewage treatment, Journal of Cleaner Production, 142(2), 1065-1074.
[[1]] Ngullie, N., Maturi, K.C., Kalamdhad, A.S., and Laishram, B. (2021), Critical success factors for PPP MSW projects – perception of different stakeholder groups in India, Environmental Challenges, 5(1), ISSN 2667-0100, https://doi.org/10.1016/j.envc.2021.100379.
[[1]] Luo, C., Ju, Y., Dong, P., Gonzalez, E.D.R.S., and Wang, A. (2021), Risk assessment for PPP waste-to-energy incineration plant projects in china based on hybrid weight methods and weighted multigranulation fuzzy rough sets, Sustainable Cities and Society, 74(1), ISSN 2210-6707.
[[1]] Mansaray, A., Coleman, S., Ataullah, A., and Sirichand, K., (2021). Residual government ownership in public-private partnership projects, Journal of Government and Economics, 4(1), ISSN 2667-3193, https://doi.org/10.1016/j.jge.2021.100018.
[[1]] Makiabadi, S.R., Behnia, K., and Akbari, A. (2014), Identification and Evaluation of Critical Risks in HSR Projects through Public-Private Partnership in Developing Countries, Journal of Structural and Construction Engineering, 1(1), 5-18 (In Persian).
[[1]] Rezaei, N.J., Mousavi., S.M. (2017), Risk Assessment and Ranking in Public-Private Partnerships for Water Supply Projects Using FMEA and Fuzyy Synthetic Evaluation Methods: A Case Study of Qom Province, Iran Water Resources Research, 13(4), 100-117 (In Persian).
[[1]] Eskandari, M., TaghaviFard, M., Raisi Vanani, A., and Ghazi Nouri, S. (2022). Intelligent hybrid model for determining the public-private partnership method of Iran's water and wastewater industry based on collective tree algorithms. Water and Wastewater, 32(1), 69-90.
[[1]] MirMoezzi, S., and Sobhieh, M. (2022). Identifying and Explaining the Factors Affecting the Environmental Complexity of Public-Private Partnership Projects (Case Study: Iran Freeway Partnership Contracts), Structural and Construction Engineering, 8 (3), 114-134 (In Persian).
[[1]] Saunders, M., Lewis, P., and Thornhill, A. (2009), Research methods for business students: Pearson education.
[[1]] Sekaran, A. (2007), Research Methods in Management, Translation: Saebi, Mohammad and Shirazi, Mahmoud, 5ed. Tehran: Higher Institute of Management Education and Research and Planning.
[[1]] DanaeiFard, H., Alwani, M., and Azar, A. (2009), Quantitative research methodology in management, a comprehensive approach, Tehran: Saffar Ishraqi Publications (In Persian).
[[1]] Chan, C.M.R., and Harris, F.C. (1989), A database/spreadsheet application for equipment selection. Constr. Manage. Econ. 7(3), 235–247.
[[1]] Moor, D., and Mccabe, G. (2006), Introduction to the practice of statis fourEdition, NewYork: WH Freema & Co.
[[1]] Momeni, M., and Qayyumi, A. (2007), Analysis of statistical data using SPSS, Isfahan: New Book Publications (In Persian).
[[1]] Ferrante, A., and Mihalakakou, G. (2001), The influence of water, green and selected passive techniques on the rehabilitation of historical industrial buildings in urban areas. Solar Energy, 70(3), 245-253.
[[1]] Zadeh, L.A. (1975), The concept of a linguistic variable and its application to approximate reasoning, Information Sciences, 8(3), 199-249.
[[1]] Pelletier, F.J. (2000), Review of Metamathematics of fuzzy logics, The Bulletin of Symbolic Logic, 6(3),342–346.
[[1]] Zadeh, L.A. (1965), Fuzzy Sets Information and Control, 8, 338-353.
[[1]] Atanasov, K. (1986), Intuitionistic Fuzzy Sets, Fuzzy Sets and Systems, 20(1), 87–96.
[[1]] Rashvandi, H. (2006), Fuzzy set theory and its application in industrial engineering and management, first edition, Tehran: Basic Science Publication.
[[1]] Deschrijver, G., and Kerre, E.E. (2003), On the relationship between some extensions of fuzzy set theory, Fuzzy Sets and Systems, 133(2), 227–235. 
[[1]] Kwong, C.K., and Bai, H. (2003), Determining the importance weights for the customer requirements in QFD using a fuzzy AHP with an extent analysis approach, IIE Transactions, 35(7), 619-626.
[[1]] Dalkey, N., and Helmer, O. (1963), An experimental application of the Delphi method to the use of experts, Management Science, 9(3), 458–467.
[[1]] Rowe, G., and Wright, G. (1999), The Delphi technique as a forecasting tool: issues and analysis, International Journal of Forecasting, 15(4), 353-375.
[[1]] Scipioni, A., Saccarola, G., Centazzo, F.A. (2002), FMEA methodology design, implementation and integration with HACCP system in a food company. Food Control, 13(2002), 495-501.
[[1]] Price, C.G., and Taylor, N.S. (2002), Automated multiple failure FMEA. Reliability Engineering and System Safety, 76, 1-10.
[[1]] Stamatis, D.H. (2012), Failure Mode and Effect Analysis: FMEA From Theory to Execution, ASQ Quality Press, 2nd Edition.
[[1]] Seung, J.R., Ishii, K. (2003), Using, Cost Based FMEA to Enhance Reliability and Serviceability, Advanced Engineering Informatics, 17, 179-188.
[[1]] Sankar, N.R., and Prabhu, B.S. (2010), Modified approach for prioritization of failures in a system failure mode and effects analysis. Int J Qual Reliab Manage, 18(3), 324-335.
[[1]] Vorley, G. (2013), Mini Guide to Failure Mode Effects Analysis Kindle Edition, Quality Management & Training (Publications) Limited; 1st edition.
[[1]] Mikulak, R.J., McDermott, R., and Beauregard, M. (2008), The Basics of FMEA, Productivity Press, 2nd Edition.
[[1]] Li, F., Wang, W., Shi, Y., and Jin, C. (2013), Fuzzy synthetic evaluation model based on the knowledge system, International Journal of Innovative Computing, Information and Control ICIC International, 9, 4073-4084.
[[1]] Xu, Y.L., Chan, A.P.C., Yeung, F.Y. (2010). Developing a fuzzy risk allocation model for PPP projects in China, Journal of Construction Engineering and Management, 136 (8), 12-24.
[[1]] Mi, C.Q., Zhang, X.D., Li S.M. (2011), Assessment of environment lodging stress for maize using fuzzy synthetic evaluation, Mathematical and Computer Modelling, 54(3-4), 1053-1060.