ارزیابی ضریب بزرگنمایی تغییرمکان در قاب‌های خمشی حاوی دیواربرشی با شکل پذیری ویژه در معرض زلزله‌های منفرد و متوالی بحرانی

نوع مقاله : علمی - پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد، دانشکده مهندسی عمران، دانشگاه تفرش، تفرش، ایران

2 استادیار، دانشکده مهندسی عمران، دانشگاه تفرش، تفرش، ایران

چکیده

ضریب بزرگنمایی تغییرمکان (Cd) در آیین‌نامه‌های لرزه‌ای بر مبنای وقوع یک زلزله‌ی منفرد برآورد و پیشنهاد گردیده است؛ در حالی که سازه‌های ساختمانی واقع در مناطق لرزه‌خیز، به طور معمول پس از وقوع یک لرزه‌ی اصلی، در معرض تعدادی پس‌لرزه نیز قرار می‌گیرند. از آنجا که در اکثر مواقع، پس‌لرزه‌ها با فاصله‌ی زمانی اندک، پس از وقوع لرزه‌ی اصلی به وقوع می‌پیوندند، تعمیر و مرمت سازه، پیش از قرارگیری در معرض پس‌لرزه‌ها، عملاً امکان‌پذیر نخواهد بود. از این رو در این مقاله، ضریب بزرگنمایی تغییرمکان برای تعدادی قاب خمشی بتن‌آرمه‌ی مجهز به دیوار برشی بتن‌آرمه (سیستم دوگانه با شکل‌پذیری ویژه)، در معرض توالی‌های لرزه‌ای بحرانی، مورد ارزیابی قرار گرفته است. بدین منظور، 3 عدد قاب ساختمانی، با تعداد طبقات 3، 7 و 11 در نرم‌افزار OpenSees پیاده‌سازی و تحت تحلیل‌های دینامیکی خطی، غیرخطی و استاتیکی خطی واقع گردیده و ضریب Cd برای هر یک از این قاب‌ها، تحت دو حالت تک‌لرزه و متوالی، محاسبه و استخراج شده است. نتایج به دست‌آمده، عدم تأثیر قابل توجه پس‌لرزه‌ها بر روی افزایش ضریب Cd، در مقایسه با لرزه‌ی نخست را، برای توالی‌های لرزه‌ای بحرانی، نشان داده است. به علاوه به منظور ارائه‌ی نتایج قابل اتکا، ارزیابی‌های صورت‌گرفته، مجدداً برای یک سری سناریو لرزه‌ای منفرد دیگر (زلزله‌های حوزه‌ی نزدیک به گسل معرفی‌شده در FEMA P695) نیز انجام شده است. نتایج به دست‌آمده نشان می‌دهد که مقادیر پیشنهادی آیین‌نامه‌های ASCE7-16 و استاندارد 2800 (ویرایش 4) برای ضریب یادشده کافی نمی‌باشند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Evaluation of Deflection Amplification Factor for Special Moment-Resisting Frame with Shear Wall under Critical Strong Ground Motions with/without Successive Shocks

نویسندگان [English]

  • Reza Rajabi Soheyli 1
  • Elham Rajabi 2
  • Yaser Golestani 1
1 MSc Student, Department of Civil Engineering, Tafresh University, 39518-79611 Tafresh, Iran
2 Assistant Professor, Department of Civil Engineering, Tafresh University, 39518-79611 Tafresh, Iran
چکیده [English]

In most seismic design codes, lateral loads are reduced by applying the response modification coefficient in the linear static analyses. Hence, the lateral displacements of the structure should be increased to obtain a realistic estimation of the actual displacements. In this regard, static drifts are multiplied by a deflection amplification factor (Cd). This factor is proposed based on single earthquakes in seismic codes such as ASCE 7 and Standard No. 2800 (4th Edition) while structures in seismic regions will typically be exposed to a number of aftershocks after a major earthquake. Since, the repair of the structures will not be practically possible before exposing to aftershocks, ensuring the proper performance of structures under successive earthquakes is essential. Accordingly, in this paper, deflection amplification factor has been evaluated for dual system of special moment-resisting frame with shear wall under critical seismic sequences. For this purpose, 3 RC building frames with the number of 3, 7 and 11 story have been subjected to linear static, linear and nonlinear dynamic analyses and the deflection amplification factor has been calculated and extracted for each of them under two states of successive and single earthquakes. The results show that successive shocks do not significantly affect the Cd compared to a single earthquake. In addition, a supplementary study has been performed for a number of single earthquakes (near-fault earthquakes which have been introduced in FEMA P695) to provide more reliable results. This investigation reveals that the proposed values in ASCE7-16 and Standard 2800 are not sufficient for Cd coefficient.

کلیدواژه‌ها [English]

  • Seismic Sequence Phenomenon
  • Deflection Amplification Factor
  • Special Reinforced Concrete Frame
  • Shear wall
  • Nonlinear Dynamic Analysis
[1]        Cui, Z., Alipour, A., and Shafei, B. (2019). Structural performance of deteriorating reinforced concrete columns under multiple earthquake events. Engineering Structures, 191, 460-468. doi: https://doi.org/10.1016/j.engstruct.2019.04.073
[2]        Samimifar, M., Oskouei, A. V., and Rofooei, F. R. (2015). Deflection amplification factor for estimating seismic lateral deformations of RC frames. Earthquake Engineering and Engineering Vibration, 14 (2), 373-384. doi: 10.1007/s11803-015-0029-y
[3]        Mahmoudi, M. and Zaree, M. (2013). Evaluating the displacement amplification factors of concentrically braced steel frames. International Journal of Advanced Structural Engineering, 5 (1), 13. doi: 10.1186/2008-6695-5-13
[4]        Kuşyılmaz, A. and Topkaya, C. (2015). Displacement amplification factors for steel eccentrically braced frames. Earthquake Engineering & Structural Dynamics, 44 (2), 167-184. doi: https://doi.org/10.1002/eqe.2463
[5]        Özkılıç, Y. O., Bozkurt, M. B., and Topkaya, C. (2018). Evaluation of seismic response factors for BRBFs using FEMA P695 methodology. Journal of Constructional Steel Research, 151, 41-57. doi: https://doi.org/10.1016/j.jcsr.2018.09.015
[6]        FEMA-P695. (2009). Quantification of building seismic performance factors, FEMA P695 ATC-63 Project Report. Washington, DC Available
[7]        ASCE7. (2016).Minimum Design Loads and Associated Criteria for Buildings and Other Structures, ASCE/SEI 7-16. City: VA, U.S.A., American Society of Civil Engineers.
[8]        Hosseinpour, F. and Abdelnaby, A. E. (2017). Effect of different aspects of multiple earthquakes on the nonlinear behavior of RC structures. Soil Dynamics and Earthquake Engineering, 92, 706-725. doi: https://doi.org/10.1016/j.soildyn.2016.11.006
[9]        Pang, R., Xu, B., Zhou, Y., Zhang, X., and Wang, X. (2020). Fragility analysis of high CFRDs subjected to mainshock-aftershock sequences based on plastic failure. Engineering Structures, 206, 110152. doi: https://doi.org/10.1016/j.engstruct.2019.110152
[10]      Zhao, C., Yu, N., Peng, T., Gautam, A., and Mo, Y. L. (2020). Vulnerability assessment of AP1000 NPP under mainshock-aftershock sequences. Engineering Structures, 208, 110348. doi: https://doi.org/10.1016/j.engstruct.2020.110348
[11]      Bao, X., Zhang, M.-H., and Zhai, C.-H. (2019). Fragility analysis of a containment structure under far-fault and near-fault seismic sequences considering post-mainshock damage states. Engineering Structures, 198, 109511. doi: https://doi.org/10.1016/j.engstruct.2019.109511
[12]      Wen, W., Ji, D., and Zhai, C. (2020). Ground motion rotation for mainshock-aftershock sequences: Necessary or not? Soil Dynamics and Earthquake Engineering, 130, 105976. doi: https://doi.org/10.1016/j.soildyn.2019.105976
[13]      Ghasemi, M., Khorshidi, H., and Fanaie, N. (2021). Performance evaluation of RC-MRFs with UHPSFRC and SMA rebars subjected to mainshock-aftershock sequences. Structures, 32, 1871-1887. doi: https://doi.org/10.1016/j.istruc.2021.02.058
[14]      Jamnani, H. H., Amiri, J. V., and Rajabnejad, H. (2018). Energy distribution in RC shear wall-frame structures subject to repeated earthquakes. Soil Dynamics and Earthquake Engineering, 107, 116-128. doi: https://doi.org/10.1016/j.soildyn.2018.01.010
[15]      Oggu, P. and Gopikrishna, K. (2020). Assessment of three-dimensional RC moment-resisting frames under repeated earthquakes. Structures, 26, 6-23. doi: https://doi.org/10.1016/j.istruc.2020.03.039
[16]      Massumi, A., Sadeghi, K., and Ghaedi, H. (2021). The effects of mainshock-aftershock in successive earthquakes on the response of RC moment-resisting frames considering the influence of the vertical seismic component. Ain Shams Engineering Journal, 12 (1), 393-405. doi: https://doi.org/10.1016/j.asej.2020.04.005
[17]      Di Sarno, L. and Amiri, S. (2019). Period elongation of deteriorating structures under mainshock-aftershock sequences. Engineering Structures, 196, 109341. doi: https://doi.org/10.1016/j.engstruct.2019.109341
[18]      Wang, X., Wen, W., and Zhai, C. (2020). Vulnerability assessment of a high-rise building subjected to mainshock–aftershock sequences. The Structural Design of Tall and Special Buildings, 29 (15), e1786. doi: https://doi.org/10.1002/tal.1786
[19]      Amiri, S. and Bojórquez, E. (2019). Residual displacement ratios of structures under mainshock-aftershock sequences. Soil Dynamics and Earthquake Engineering, 121, 179-193. doi: https://doi.org/10.1016/j.soildyn.2019.03.021
[20]      Dulinska, J. M. and Murzyn, I. J. (2016). Dynamic behaviour of a concrete building under a mainshock–aftershock seismic sequence with a concrete damage plasticity material model. Geomatics, Natural Hazards and Risk, 7 (sup1), 25-34. doi: 10.1080/19475705.2016.1181341
[21]      Song, L.-L., Guo, T., and Cao, Z.-L. (2015). Seismic response of self-centering prestressed concrete moment resisting frames with web friction devices. Soil Dynamics and Earthquake Engineering, 71, 151-162. doi: https://doi.org/10.1016/j.soildyn.2015.01.018
[22]      Uang, C. M. (1991). Establishing R (or Rw) and Cd Factors for Building Seismic Provisions. Journal of Structural Engineering, 117 (1), 19-28. doi: doi:10.1061/(ASCE)0733-9445(1991)117:1(19)
[23]      Yakhchalian, M., Asgarkhani, N., and Yakhchalian, M. (2020). Evaluation of deflection amplification factor for steel buckling restrained braced frames. Journal of Building Engineering, 30, 101228. doi: https://doi.org/10.1016/j.jobe.2020.101228
[24]      ETABS, Integrated Building Design Software. (2016). Computer and Structures Inc., Berkeley, CA, USA.
[25]      Iranian Code of Practice for Seismic Resistance Design of Buildings, Standard No. 2800, 4th edition, BHRC, 2016.
[26]      NBRI. (2013).National Building Regulations of Iran, Part 6. City: Tehran, Road, Housing and Urban Development Research Center.
[27]      ACI318. (2014).Building code requirements for structural concrete and commentary, ACI 318-14. City: Farmington Hills, Michigan, American Concrete Institute.
[28]      Open system for earthquake engineering simulation (OpenSees). Pacific earthquake engineering research center, University of California, Berkeley.
[29]      Kolozvari, K., Tran, T. A., Orakcal, K., and Wallace, J. W. (2015). Modeling of Cyclic Shear-Flexure Interaction in Reinforced Concrete Structural Walls. II: Experimental Validation. Journal of Structural Engineering, 141 (5), 04014136. doi: doi:10.1061/(ASCE)ST.1943-541X.0001083
[30]      Kolozvari, K., Orakcal, K., and Wallace, J. W. (2015). Modeling of Cyclic Shear-Flexure Interaction in Reinforced Concrete Structural Walls. I: Theory. Journal of Structural Engineering, 141 (5), 04014135. doi: doi:10.1061/(ASCE)ST.1943-541X.0001059
[31]      Ibarra, L. F., Medina, R. A., and Krawinkler, H. (2005). Hysteretic models that incorporate strength and stiffness deterioration. Earthquake Engineering & Structural Dynamics, 34 (12), 1489-1511. doi: https://doi.org/10.1002/eqe.495
[32]      Lignos, D. and Krawinkler, H. (2012). Sidesway collapse of deteriorating structural systems under seismic excitations. Stanford University, Stanford, CA Available
[33]      Haselton, C. B., Liel, A. B., Dean, B. S., Chou, J. H., and Deierlein, G. G., "Seismic Collapse Safety and Behavior of Modern Reinforced Concrete Moment Frame Buildings," in Structural Engineering Research Frontiers, 2007, pp. 1-14.
[34]      Haselton, C. B., Liel, A. B., Taylor-Lange, S. C., and Deierlein, G. G. (2016). Calibration of model to simulate response of reinforced concrete beam-columns to collapse. ACI Structural Journal, 113 (6), doi.
[35]      Menegotto, M. and Pinto, P. E. (1973). Method of analysis of cyclically loaded RC plane frames including changes in geometry and non-elastic behavior of elements under normal force and bending. Available
[36]      Mander, J. B., Priestley, M. J. N., and Park, R. (1988). Theoretical Stress-Strain Model for Confined Concrete. Journal of Structural Engineering, 114 (8), 1804-1826. doi: doi:10.1061/(ASCE)0733-9445(1988)114:8(1804)
[37]      Liu, Y., Kuang, J. S., Huang, Q., Guo, Z., and Wang, X. (2020). Spectrum-based pushover analysis for the quick seismic demand estimation of reinforced concrete shear walls. Structures, 27, 1490-1500. doi: https://doi.org/10.1016/j.istruc.2020.07.040
[38]      Haselton, C. B. (2006).Assessing seismic collapse safety of modern reinforced concrete moment frame buildings.Stanford University,
[39]      Kolozvari, K., Orakcal, K., and Wallace, J. (2015). Shear-Flexure Interaction Modeling for Reinforced Concrete Structural Walls and Columns under Reversed Cyclic Loading. University of California, Berkeley Available
[40]      Abdollahzadeh, G., Mohammadgholipour, A., and Omranian, E. (2019). Seismic Evaluation of Steel Moment Frames Under Mainshock–Aftershock Sequence Designed by Elastic Design and PBPD Methods. Journal of Earthquake Engineering, 23 (10), 1605-1628. doi: 10.1080/13632469.2017.1387198
[41]      Ruiz-García, J., Marín, M. V., and Terán-Gilmore, A. (2014). Effect of seismic sequences in reinforced concrete frame buildings located in soft-soil sites. Soil Dynamics and Earthquake Engineering, 63, 56-68. doi: https://doi.org/10.1016/j.soildyn.2014.03.008
[42]      Ruiz-García, J. and Negrete-Manriquez, J. C. (2011). Evaluation of drift demands in existing steel frames under as-recorded far-field and near-fault mainshock–aftershock seismic sequences. Engineering Structures, 33 (2), 621-634. doi: https://doi.org/10.1016/j.engstruct.2010.11.021
[43]      Ruiz-García, J., Bojorquez, E., and Corona, E. (2018). Seismic behavior of steel eccentrically braced frames under soft-soil seismic sequences. Soil Dynamics and Earthquake Engineering, 115, 119-128. doi: https://doi.org/10.1016/j.soildyn.2018.08.018
[44]      Ghodrati Amiri, G. and Manouchehri Dana, F. (2005). Introduction of the most suitable parameter for selection of critical earthquake. Computers & Structures, 83 (8), 613-626. doi: https://doi.org/10.1016/j.compstruc.2004.10.010
[45]      Ghodrati Amiri, G. and Rajabi, E. (2017). Damage evaluation of reinforced concrete and steel frames under critical successive scenarios. International Journal of Steel Structures, 17 (4), 1495-1514. doi: 10.1007/s13296-017-1218-5