بررسی عملکرد قاب‌های خمشی فولادی نیمه صلب مجهز به میراگرهای غیرفعال منحنی شکل فولادی

نوع مقاله : علمی - پژوهشی

نویسندگان

1 دانشجوی دکتری، گروه مهندسی عمران، واحد مراغه، دانشگاه آزاد اسلامی، مراغه، ایران

2 استادیار، گروه مهندسی عمران، دانشکده مهندسی عمران، واحد مراغه، دانشگاه آزاد اسلامی، مراغه، ایران

3 استاد، گروه مهندسی عمران، دانشکده مهندسی عمران، دانشگاه تبریز، تبریز، ایران

چکیده

استفاده از میراگرهای منحنی شکل وابسته به جابجایی بعنوان فیوز یا عضو قابل تعویض در محل اتصال تیر به ستون قاب فولادی، یکی از جدیدترین روش‌ها برای بهبود عملکرد لرزه‌ای قاب‌های خمشی فولادی نیمه صلب می‌باشد. در این تحقیق، عملکرد میراگر منحنی شکل فولادی با مقاومت تسلیم پایین در قاب‌های خمشی فولادی نیمه صلب .بررسی شده است. این میراگرهای فولادی بصورت غیرفعال بوده و در محل اتصال تیر به ستون قاب نصب می‌شوند. پارامترهای مختلف این تحقیق شامل عرض میراگر (۷۵، ۱۰۰ و ۱۲۵ میلی‌متر)، ضخامت میراگر (۱۰، ۱۵، ۲۰، ۲۵ و ۳۰ میلی‌متر) و نوع فولاد میراگر منحنی (SN400YB و LY160) می‌باشد. ارزیابی مدل‌های قاب‌های خمشی فولادی نیمه صلب با استفاده از روش اجزای محدود توسط نرم‌افزار ABAQUS انجام شده است. برای اعتبارسنجی، یک قاب خمشی فولادی نیمه صلب مجهز به میراگر منحنی فولادی تحت اثر بارگذاری چرخه‌ای مدلسازی شد که بصورت آزمایشگاهی تست و در تحقیقات آزمایشگاهی گذشته گزارش شده بود. مقایسه‌ی نتایج مدلسازی با آزمایشگاهی، تطابق خوبی را نشان دادند. نتایج کلی نشان دادند که استفاده از فولاد با مقاومت حد پایین در میراگر منحنی شکل فولادی با تاکید بر اثر ضخامت میراگر، باعث می‌شود که پارامتر شکل‌پذیری و جذب انرژی کل در مقایسه با فولاد دارای تنش تسلیم بالا افزایش یابد. همچنین با تشکیل مفصل پلاستیک در ناحیه میراگر منحنی شکل فولادی از شکل‌گیری آن در محل اتصال تیر به ستون جلوگیری می‌شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Investigation of the performance of semi-rigid moment steel frames system with passive steel curved dampers

نویسندگان [English]

  • Hamid Shojaeifar 1
  • Ahmad Maleki 2
  • Mohammad-Ali Lotfollahi-Yaghin 3
1 Ph.D. Candidate, Department of Civil Engineering, Maragheh branch, Islamic Azad University, Maragheh, Iran.
2 Assistant Professor, Department of Civil Engineering, Maragheh branch, Islamic Azad University, Maragheh, Iran.
3 Faculty of Civil Engineering, University of Tabriz, Tabriz, Iran.
چکیده [English]

The use of displacement-dependent steel curved dampers as fuse or interchangeable element in the beam-to-column connection region is one of the newest methods for improving the seismic performance of semi-rigid moment steel frames (SRMF). In the present study, performance of low-yield strength steel curved dampers in SRMF has been investigated. These dampers are inactive and install in the beam-to-column connection region. Variable parameters of this study involve the damper width (75, 100 and 125 mm), damper thickness (10, 15, 20, 25 and 30 mm) and the curve damper steel type (SN400YB and LY160). Evaluation of SRMF models were performed using finite element method by ABAQUS software. For validation, a SRMF with steel curve dampers under cyclic loading was modeled that had been experimentally tested and reported in previous experimental research and a good agreement was observed. The results show that the use of low-yield strength steel in curved steel dampers, depending on the damper thickness, can lead to an increase in the ductility parameter and total energy dissipated compared to the steel with higher yield stress. Also, the steel curved damper around the beam-to-column connection zone has caused the plastic hinge to occur in the farther region of the connection.

کلیدواژه‌ها [English]

  • Moment resisting steel frames
  • Steel curved dampers
  • Beam-to-column connection
  • Low-yield strength plates
  • Finite element analysis
[1] Girão Coelho, A. M., Silva, L. S. Da, and Bijlaard, F. S. K. (2006). “Ductility analysis of bolted extended end plate beam-to-column connections in the framework of the component method.” Steel and Composite Structures, Techno Press, 6(1), 33–53. https://doi.org/10.12989/scs.2006.6.1.033
 
[2] Azandariani, M.G., Gholhaki, M., Kafi, M.A. and Zirakian, T. (2020d). “Study of Effects of Beam-Column Connection and Column Rigidity on the Performance of SPSW System.” Journal of Building Engineering, 33, p.101821. https://doi.org/10.1016/j.jobe.2020.101821
 
[3] Ma, H., Jiang, W., and Cho, C. (2011). “Experimental study on two types of new beam-to-column connections.” Steel and Composite Structures, Techno Press, 11(4), 291–305. https://doi.org/10.12989/scs.2011.11.4.291
 
[4] Mele, E., Calado, L., and De Luca, A. (2001). “Cyclic behaviour of beam-to-column welded connections.” Steel and Composite Structures, Techno-Press, 1(3), 269–282. https://doi.org/10.12989/scs.2001.1.3.269
 
[5] Rezaifar, O., Nazari, M., and Gholhaki, M. (2017). “Experimental study of rigid beam-to-box column connections with types of internal/external stiffeners.” Steel and Composite Structures, Techno Press, 25(5), 535–544. https://doi.org/10.12989/scs.2017.25.5.535
 
[6] Hsu, H. L., and Li, Z. C. (2015). “Seismic performance of steel frames with controlled buckling mechanisms in knee braces.” Journal of Constructional Steel Research, Elsevier Ltd, 107, 50–60. https://doi.org/10.1016/j.jcsr.2015.01.010
 
[7] Dubina, D., and Stratan, A. (2002). “Behaviour of welded connections of moment resisting frames beam-to-column joints.” Engineering Structures, Elsevier BV, 24(11), 1431–1440. https://doi.org/10.1016/S0141-0296(02)00091-3
 
[8] Pucinotti, R. (2006). “Cyclic mechanical model of semirigid top and seat and double web angle connections.” Steel and Composite Structures, Techno Press, 6(2), 139–157. https://doi.org/10.12989/scs.2006.6.2.139
 
[9] Shojaeifar, H., Maleki, A., and Lotfollahi-Yaghin, M. A. (2020). “Performance evaluation of curved-TADAS damper on seismic response of moment resisting steel frame.” International Journal of Engineering, Transactions A: Basics, Materials and Energy Research Center, 33(1), 55–67. https://doi.org/10.5829/ije.2020.33.01a.07
 
[10] Lor, H. A., Izadinia, M., and Memarzadeh, P. (2019). “Experimental evaluation of steel connections with horizontal slit dampers.” Steel and Composite Structures, Techno Press, 32(1), 79–90. https://doi.org/10.12989/scs.2019.32.1.079
 
[11] Mohammadi, M., Kafi, M. A., Kheyroddin, A., and Ronagh, H. R. (2019). “Experimental and numerical investigation of an innovative buckling-restrained fuse under cyclic loading.” Structures, Elsevier BV, 22, 186–199. https://doi.org/10.1016/j.istruc.2019.07.014
 
[12] Mohammadi, M., Kafi, M. A., Kheyroddin, A., and Ronagh, H. R. (2020). “Performance of innovative composite buckling-restrained fuse for concentrically braced frames under cyclic loading.” Steel and Composite Structures, Techno-Press, 36(2), 163–177. https://doi.org/10.12989/SCS.2020.36.2.163
 
[13] Xu, L., Li, Z., and Lv, Y. (2014). “Nonlinear seismic damage control of steel frame-steel plate shear wall structures using MR dampers.” Earthquake and Structures, Techno Press, 7(6), 937–953. https://doi.org/10.12989/eas.2014.7.6.937
 
[14] El-Bahey, S., and Bruneau, M. (2011). “Buckling restrained braces as structural fuses for the seismic retrofit of reinforced concrete bridge bents.” Engineering Structures, Elsevier, 33(3), 1052–1061. https://doi.org/10.1016/j.engstruct.2010.12.027
 
[15] Roeder, C. W. C., and Popov, E. E. P. (1977). “Inelastic behavior of eccentrically braced steel frames under cyclic loadings.” NASA STI/Recon Technical Report N, 78(August), 20375.
 
[16] Chen, Y.-T., and Chai, Y. H. (2011). “Effects of brace stiffness on performance of structures with supplemental Maxwell model-based brace-damper systems.” Earthquake Engineering & Structural Dynamics, John Wiley and Sons Ltd, 40(1), 75–92. https://doi.org/10.1002/eqe.1023
 
[17] Benavent-Climent, A. (2010). “A brace-type seismic damper based on yielding the walls of hollow structural sections.” Engineering Structures, Elsevier, 32(4), 1113–1122. https://doi.org/10.1016/j.engstruct.2009.12.037
 
[18] Kang, J. Do, and Tagawa, H. (2013). “Seismic performance of steel structures with seesaw energy dissipation system using fluid viscous dampers.” Engineering Structures, Elsevier, 56, 431–442. https://doi.org/10.1016/j.engstruct.2013.05.015
 
[19] Piedrafita, D., Cahis, X., Simon, E., and Comas, J. (2013). “A new modular buckling restrained brace for seismic resistant buildings.” Engineering Structures, Elsevier, 56, 1967–1975. https://doi.org/10.1016/j.engstruct.2013.08.013
 
[20] Hsu, H. L., and Halim, H. (2017). “Improving seismic performance of framed structures with steel curved dampers.” Engineering Structures, Elsevier Ltd, 130, 99–111. https://doi.org/10.1016/j.engstruct.2016.09.063
 
[21] Karimian, A., Armaghani, A., and Behravesh, A. (2019). “Performance of Low-yield Strength Plates in Beam-column Connections against Progressive Collapse.” KSCE Journal of Civil Engineering, 23(1), pp. 335-345. https://doi.org/10.1007/s12205-018-0653-y
 
[22] ABAQUS-6.12-1. (2012). standard user’s manual. Hibbitt, Karlsson and Sorensen, Inc.
 
[23] Shojaeifar, H., Farzam, M. (2014). “Investigation of the Effect of Bond-Slip on Cracking of RC Beams Utilizing Lattice Models”. Journal of Civil and Environmental Engineering, 44.3(76), pp. 27-37.
 
[24] Mohebkhah, A., and Azandariani, M. G. (2015). “Lateral–torsional buckling of Delta hollow flange beams under moment gradient.” Thin-Walled Structures, Elsevier, 86, 167–173. https://doi.org/10.1016/j.tws.2014.10.011
 
[25] Mohebkhah, A., and Azandariani, M. G. (2016). “Lateral-torsional buckling resistance of unstiffened slender-web plate girders under moment gradient.” Thin-Walled Structures, Elsevier, 102, 215–221. https://doi.org/10.1016/j.tws.2016.02.001
 
[26] Mohebkhah, A., and Azandariani, M. G. (2020). “Shear resistance of retrofitted castellated link beams: Numerical and limit analysis approaches.” Engineering Structures, Elsevier Ltd, 203, 109864. https://doi.org/10.1016/j.engstruct.2019.109864
 
[27] Ali, M. M., Osman, S. A., Husam, O. A., and Al-Zand, A. W. (2018). “Numerical study of the cyclic behavior of steel plate shear wall systems (SPSWs) with differently shaped openings.” Steel and Composite Structures, Techno Press, 26(3), 361–373. https://doi.org/10.12989/scs.2018.26.3.361
 
[28] Talebizadehsardari, P., Eyvazian, A., Azandariani, M. G., Tran, T. N., Rajak, D. K. and Mahani, R. B. (2020). “Buckling analysis of smart beams based on higher order shear deformation theory and numerical method.” Steel and Composite Structures, 35(5), 635–640. https://doi.org/https://doi.org/10.12989/scs.2020.35.5.635
 
[29] Gorji Azandariani, M., Abdolmaleki, H., and Gorji Azandariani, A. (2020a). “Numerical and analytical investigation of cyclic behavior of steel ring dampers (SRDs).” Thin-Walled Structures, Elsevier, 151, 106751. https://doi.org/10.1016/j.tws.2020.106751
 
[30] Gorji Azandariani, M., Gorji Azandariani, A., and Abdolmaleki, H. (2020e). “Cyclic behavior of an energy dissipation system with steel dual-ring dampers (SDRDs).” Journal of Constructional Steel Research, 172, 106145. https://doi.org/10.1016/j.jcsr.2020.106145
 
[31] ATC-24. (1992). Guidelines for cyclic seismic testing of components of steel structures. California.
 
[32] FEMA 356. (2000). Federal Emergency Management Agency, Prestandard and Commentary for the Seismic Rehabilitation of Buildings. Washington, DC, USA.
 
[33] Gorji Azandariani, M., Gholhaki, M., and Kafi, M. A. M. A. (2020b). “Experimental and numerical investigation of low-yield-strength (LYS) steel plate shear walls under cyclic loading.” Engineering Structures, Elsevier Ltd, 203, 109866. https://doi.org/10.1016/j.engstruct.2019.109866
 
[34] Gorji Azandariani, M., Gholhaki, M., and Kafi, M. A. (2020c). “Hysteresis finite element model for evaluation of cyclic behavior and performance of steel plate shear walls (SPSWs).” Structures, 29, 30–47. https://doi.org/10.1016/j.istruc.2020.11.009
 
[35] Gorji Azandariani, M., Rousta, A. M., Usefvand, E., Abdolmaleki, H., and Gorji Azandariani, A. (2021a). “Improved seismic behavior and performance of energy-absorbing systems constructed with steel rings.” Structures, Elsevier, 29, 534–548. https://doi.org/10.1016/j.istruc.2020.11.041
 
 
[36] Gorji Azandariani, M., Gholhaki, M., Kafi. M. A., Zirakian, T., Khan, A., Abdolmaleki, H., and Shojaeifar, H.   (2021b). “Investigation of performance of steel plate shear walls with partial plate-column connection (SPSW-PC).” Steel and Composite Structures, Techno Press, 39(1), 109–123. http://dx.doi.org/10.12989/scs.2021.39.1.109