ارائه مدل های بهینه شده هوش مصنوعی جهت بررسی رفتار مقاومتی بتن پایدار حاوی ریزدانه های بازیافتی پلی اتیلن ترفتالات

نوع مقاله : علمی - پژوهشی

نویسندگان

1 دانشجوی دکتری مهندسی و مدیریت ساخت، گروه مهندسی عمران، واحد رودهن، دانشگاه آزاد اسلامی، رودهن، ایران

2 استادیار گروه مهندسی عمران، واحد رودهن، دانشگاه آزاد اسلامی، رودهن، ایران

3 استادیار گروه عمران، دانشگاه آزاد اسلامی، واحد روهن

چکیده

یکی از موارد مصرف مجدد ضایعات بدون داشتن اثرات مخرب زیست محیطی، استفاده در صنعت بتن می باشد .از این رو، بررسی اثرگزاری مولفه‌های طرح اختلاط در مطالعات آزمایشگاهی و ارائه مدل‌های محاسباتی جهت ارزیابی خواص مکانیکی بتن رو به گسترش می‌باشد. از جمله تحقیقات به روز در این مورد، توسعه مدل‌های رگرسیونی محاسباتی جهت ارزیابی خواص بتن های سازگار با محیط زیست حاوی ریزدانه‌های پلی اتیلن ترفتالات (پت) بازیافت شده با استفاده از روش‌های هوش مصنوعی می‌باشد. مدل‌های توسعه داده شده می‌تواند به عنوان جایگزین فرایند آزمایشگاهی در ارائه پیش طرح اختلاط‌ها و صرفه جویی‌های اقتصادی و زیست محیطی شود. در این تحقیق، روش-های هوش مصنوعی مارس و ماشین یادگیری سریع با الگوریتم ازدحام ذرات تجمیع شده تا مدل‌هایی با دقت بالا و جامع برای تخمین خواص بتن ارائه شود. مدل‌های مبتنی بر روابط محاسباتی جهت تخمین مقادیر خواص بتن سازگار با محیط زیست حاوی پت با استفاده از مدل های هوشمند، توسعه یافته و کیفیت مدل‌ها در جهت تخمین مشخصه-های بتن و بررسی مولفه‌های طرح اختلاط این بتن بررسی شد. نتایج مدل‌های هوشمند نشان داد، استفاده از الگوریتم‌ در روند بهینه یابی ضرایب و وزن‌های روش‌های مورد استفاده، عملکرد مد‌ل‌های محاسباتی را با دقت قابل توجهی مواجه کرده است. پیش‌بینی رفتار مقاومتی مدل‌ها در مدل تلفیقی مارس بهینه شده (% 5/3 RSE=836/4 RMSE=،902/0R=) در مقایسه با دیگر مدل‌ها در‌ این مطالعه دقت قابل توجهی را بیان نموده است. همچنین جهت بررسی مولفه‌های اثرگزار در مقادیر خواص مقاومتی تحلیل حساسیت انجام و نتایج نشان داد ریزدانه با درصد 30/20 % بیشترین اثرگزاری را در بررسی مولفه‌های طرح اختلاط دارا بوده است. در نهایت عدم قطعیت مدل‌ها با استفاده از شبیه سازی مونت کارلو نشان داد مدل تلفیقی مارس با درصد عدم قطعیت 42/14 کمترین میزان عدم قطعیت را در بین مدل‌های توسعه داده شده کسب نموده است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Presenting an Optimized Artificial Intelligent Models to Investigate the Strength Behavior of Sustainable Concrete Containing Recycled Polyethylene Terephthalate-based Fine Aggregate

نویسندگان [English]

  • Mahdi Mirzagoltabar Roshan 1
  • Mohammadhadi AlizadeElizei 2
  • Reza Esmaeilabadi 3
1 PhD candidate, Department of civil engineering, Roudehen Branch, Islamic Azad University, Roudehen, Iran
2 Department of civil engineering, Roudehen Branch, Islamic Azad University, Roudehen, Iran
3 Assistant professor , Department of Civil Engineering, Roudehen Branch,Tehran, Iran,
چکیده [English]

In this research, optimized intelligent models were developed to design optimal sustainable concrete containing recycled Polyethylene Terephthalate (PET). For this aim, evolutionary Artificial Intelligence (AI) approach was implemented based on the integration of the Multivariate Adaptive Regression Splines (MARS) and Extreme Learning Machine (ELM) integrated with particle swarm optimization algorithm to investigate the strength behavior of sustainable concrete containing recycled polyethylene terephthalate-based fine aggregate. The experimental database consisting 273 records comprising mixture components at different ages are collected from published papers and optimal variables are identified using principal component analysis. The capability and efficiency of proposed model are validated through standalone MARS and ELM. Performance metrics indicated that proposed evolutionary formula-based models (MARS-PSO and ELM-PSO with the ((R= 0.902, RMSE=4.836 MPa and RSE=3.5) and (R= 0.900, RMSE=4.881 MPa and RSE=2.24), respectively) outperformed than other standalone AI models for CS prediction. Uncertainty analysis of the standalone and hybridized models is also applied using Monte-carlo simulation to prove that the hybridized multiscale model has less uncertainty in the prediction of the compressive strength compared to those benchmark models. The findings of the present paper presented the superiority of the model’s development in constructing reasonable and robustness evolutionary Model for formulation of CS of eco-friendly concrete containing recycled PET.

کلیدواژه‌ها [English]

  • Sustainable concrete Polyethylene terephthalate (PET)
  • Artificial intelligence
  • MARS
  • Extreme learning machine
  • Monte-Carlo simulation
  1. AzariJafari, H., Amiri, M.J.T., Ashrafian, A., Rasekh, H., Barforooshi, M.J. and Berenjian, J., 2019. Ternary blended cement: An eco-friendly alternative to improve resistivity of high-performance self-consolidating concrete against elevated temperature. Journal of Cleaner Production, 223, pp.575-586.
  2. Beigi, M.H., Berenjian, J., Omran, O.L., Nik, A.S. and Nikbin, I.M., 2013. An experimental survey on combined effects of fibers and nanosilica on the mechanical, rheological, and durability properties of self-compacting concrete. Materials & Design, 50, pp.1019-1029.
  3. Al-Hadithi, A. I., Noaman, A. T., & Mosleh, W. K. (2019). Mechanical properties and impact behavior of PET fiber reinforced self-compacting concrete (SCC). Composite Structures, 224, 111021.
  4. Dehestani M., Beigi M. 2011, PET bottles for recycling waste and environmental solutions to help replace them as fine aggregate in concrete. Journal of concrete research. 5(1), 7-18 (In Persian).
  5. de Luna, A. M., & Shaikh, F. U. A. (2020). Anisotropy and bond behaviour of recycled Polyethylene terephthalate (PET) fibre as concrete reinforcement. Construction and Building Materials, 265, 120331.
  6. ASHRAFIAN, A., TAHERI, A. M. J., & HAGHIGHI, F. (2019). Modeling the Slump Flow of Self-Compacting Concrete Incorporating Metakaolin Using Soft Computing Techniques.
  7. Shahmansouri, A. A., Yazdani, M., Ghanbari, S., Bengar, H. A., Jafari, A., & Ghatte, H. F. (2021). Artificial neural network model to predict the compressive strength of eco-friendly geopolymer concrete incorporating silica fume and natural zeolite. Journal of Cleaner Production, 279, 123697.
  8. NoParast, M., Hematian, M., Ashrafian, A., Amiri, M. J. T., & AzariJafari, H. (2021). Development of a non-dominated sorting genetic algorithm for implementing circular economy strategies in the concrete industry. Sustainable Production and Consumption, 27, 933-946.
  9. Behnood, Ali, et al. "Prediction of the compressive strength of normal and high-performance concretes using M5P model tree algorithm." Construction and Building Materials 142 (2017): 199-207.
  10. Sun, L., Koopialipoor, M., Armaghani, D. J., Tarinejad, R., & Tahir, M. M. (2019). Applying a meta-heuristic algorithm to predict and optimize compressive strength of concrete samples. Engineering with Computers, 1-13.
  11. Sadowski, Ł., Piechówka-Mielnik, M., Widziszowski, T., Gardynik, A., & Mackiewicz, S. (2019). Hybrid ultrasonic-neural prediction of the compressive strength of environmentally friendly concrete screeds with high volume of waste quartz mineral dust. Journal of cleaner production, 212, 727-740.
  12. Asteris, P. G., Ashrafian, A., & Rezaie-Balf, M. (2019). Prediction of the compressive strength of self-compacting concrete using surrogate models. Computers and Concrete, 24(2), 137-150.
  13. DeRousseau, M. A., Laftchiev, E., Kasprzyk, J. R., Rajagopalan, B., & Srubar III, W. V. (2019). A comparison of machine learning methods for predicting the compressive strength of field-placed concrete. Construction and Building Materials, 228, 116661.
  14. Golafshani, E. M., Behnood, A., & Arashpour, M. (2020). Predicting the compressive strength of normal and High-Performance Concretes using ANN and ANFIS hybridized with Grey Wolf Optimizer. Construction and Building Materials, 232, 117266.
  15. Ashrafian, A., Amiri, M. J. T., Masoumi, P., Asadi-shiadeh, M., Yaghoubi-chenari, M., Mosavi, A., & Nabipour, N. (2020). Classification-Based Regression Models for Prediction of the Mechanical Properties of Roller-Compacted Concrete Pavement. Applied Sciences, 10(11), 3707.
  16. Feng, D. C., Liu, Z. T., Wang, X. D., Chen, Y., Chang, J. Q., Wei, D. F., & Jiang, Z. M. (2020). Machine learning-based compressive strength prediction for concrete: An adaptive boosting approach. Construction and Building Materials, 230, 117000.
  17. Akbari, M., & Deligani, V. J. (2020). Data driven models for compressive strength prediction of concrete at high temperatures. Frontiers of Structural and Civil Engineering, 14(2), 311-321.
  18. Shahmansouri, A. A., Yazdani, M., Ghanbari, S., Bengar, H. A., Jafari, A., & Ghatte, H. F. (2021). Artificial neural network model to predict the compressive strength of eco-friendly geopolymer concrete incorporating silica fume and natural zeolite. Journal of Cleaner Production, 279, 123697.
  19. Sevim, U. K., Bilgic, H. H., Cansiz, O. F., Ozturk, M., & Atis, C. D. (2021). Compressive strength prediction models for cementitious composites with fly ash using machine learning techniques. Construction and Building Materials, 271, 121584.
  20. Friedman JH. Multivariate adaptive regression splines. Ann Stat(1991);19:1–141.
  21. Jekabsons G. VariReg: a software tool for regression modelling using various modeling methods. RigaTechnical University, (2010). <http://www.cs.rtu.lv/ jekabsons/>.
  22. Huang, G. B., Zhou, H., Ding, X., & Zhang, R. (2011). Extreme learning machine for regression and multiclass classification. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 42(2), 513-529.
  23. Zhou, C., Gao, H. B., Gao, L., & Zhang, W. G. (2003). Particle Swarm Optimization (PSO) Algorithm [J]. Application Research of Computers, 12, 7-11.
  24. Deng, W., Yao, R., Zhao, H., Yang, X., & Li, G. (2019). A novel intelligent diagnosis method using optimal LS-SVM with improved PSO algorithm. Soft Computing, 23(7), 2445-2462.
  25. Pearson, K. (1895). Correlation coefficient. In Royal Society Proceedings (Vol. 58, p. 214).
  26. Chai, T., & Draxler, R. R. (2014). Root mean square error (RMSE) or mean absolute error (MAE). Geoscientific Model Development Discussions, 7(1), 1525-1534.
  27. Knaub Jr, J. R. (2007). Model and Survey Performance Measurement by the RSE and RSESP. In Proceedings of the Section on Survey Research Methods, American Statistical Association (pp. 2730-2736).
  28. Frigione, M. (2010). Recycling of PET bottles as fine aggregate in concrete. Waste management, 30(6), 1101-1106.
  29. Galvão, J. C. A., Portella, K. F., Joukoski, A., Mendes, R., & Ferreira, E. S. (2011). Use of waste polymers in concrete for repair of dam hydraulic surfaces. Construction and Building Materials, 25(2), 1049-1055.
  30. Saikia, N., & Brito, J. D. (2013). Waste polyethylene terephthalate as an aggregate in concrete. Materials Research, 16(2), 341-350.
  31. Azhdarpour, A. M., Nikoudel, M. R., & Taheri, M. (2016). The effect of using polyethylene terephthalate particles on physical and strength-related properties of concrete; a laboratory evaluation. Construction and Building Materials, 109, 55-62.
  32. Irwan, J. M., Othman, N., Koh, K. H., Asyraf, R. M., Faisal, S. K., Annas, M. M. K., & Shahrizan, A. M. (2013). Development of mix design nomograph for polyethylene terephthalate fiber concrete. In Applied Mechanics and Materials (Vol. 253, pp. 408-416). Trans Tech Publications Ltd.
  33. Ramadevi, K., & Manju, R. (2012). Experimental investigation on the properties of concrete with plastic PET (bottle) fibres as fine aggregates. International journal of emerging technology and advanced engineering, 2(6), 42-46.
  34. Ávila Córdoba, L., Martínez-Barrera, G., Barrera Díaz, C., Ureña Nuñez, F., & Loza Yañez, A. (2013). Effects on mechanical properties of recycled PET in cement-based composites. International Journal of Polymer Science, 2013.
  35. Albano, C., Camacho, N., Hernandez, M., Matheus, A., & Gutierrez, A. (2009). Influence of content and particle size of waste pet bottles on concrete behavior at different w/c ratios. Waste Management, 29(10), 2707-2716.
  36. Akçaözoğlu, S., Akçaözoğlu, K., & Atiş, C. D. (2013). Thermal conductivity, compressive strength and ultrasonic wave velocity of cementitious composite containing waste PET lightweight aggregate (WPLA). Composites Part B: Engineering, 45(1), 721-726.
  37. Rahmani, E., Dehestani, M., Beygi, M. H. A., Allahyari, H., & Nikbin, I. M. (2013). On the mechanical properties of concrete containing waste PET particles. Construction and Building Materials, 47, 1302-1308.
  38. Islam, M. J., Meherier, M. S., & Islam, A. R. (2016). Effects of waste PET as coarse aggregate on the fresh and harden properties of concrete. Construction and Building Materials, 125, 946-951.
  39. Mohammed, M. K., Al-Hadithi, A. I., & Mohammed, M. H. (2019). Production and optimization of eco-efficient self compacting concrete SCC with limestone and PET. Construction and Building Materials, 197, 734-746.
  40. Sadrmomtazi, A., Dolati-Milehsara, S., Lotfi-Omran, O., & Sadeghi-Nik, A. (2016). The combined effects of waste Polyethylene Terephthalate (PET) particles and pozzolanic materials on the properties of self-compacting concrete. Journal of Cleaner Production, 112, 2363-2373.
  41. Ananthakumar, A., Sasiekalaa, K., & Deepika, M. (2017). PERFORMANCE OF CONCRETE USING PET BOTTLE SCRAP FINES. International Journal, 5(3), 138-143.
  42. Norhana, A. R., Kartini, K., & Hamidah, M. S. (2016). Rubberized-PET and Rubberized-Coconut Shell as Fine Aggregate in Concrete. In InCIEC 2015 (pp. 221-231). Springer, Singapore.
  43. Dunteman, G. H. (1989). Principal components analysis (No. 69). Sage.
  44. Ashrafian, A., Taheri Amiri, M., haghighi, F. (2019). Modeling the Slump Flow of Self-Compacting Concrete Incorporating Metakaolin Using Soft Computing Techniques. Journal of Structural and Construction Engineering, 6(Issue 2), 5-20. doi: 10.22065/jsce.2018.90214.1243
  45. TAHERI AMIRI M J, Ashrafian A, Haghighi F R, Javaheri Barforooshi M. Prediction of the Compressive Strength of Self-compacting Concrete containing Rice Husk Ash using Data Driven Models. IQBQ. 2019; 19 (1) :209-221
  46. B Shariati, M., Mafipour, M. S., Mehrabi, P., Bahadori, A., Zandi, Y., Salih, M. N., ... & Poi-Ngian, S. (2019). Application of a hybrid artificial neural network-particle swarm optimization (ANN-PSO) model in behavior prediction of channel shear connectors embedded in normal and high-strength concrete. Applied Sciences, 9(24), 5534.
  47. Hanteh, R., Hanteh, M., Kheyroddin, A., & Rezaifar, O. (2020). Determination of Strength Parameters in Roller Compacted Concrete (RCC) Dams using Laboratory Results and Forecasting based on Artificial Neural Networks. Modares Civil Engineering journal, 20(2), 55-70.
  48. Akbari, M., & Henteh, M. (2019). Comparison of Genetic Algorithm (GA) and Particle Swarm Optimization Algorithm (PSO) for Discrete and Continuous Size Optimization of 2D Truss Structures. Journal of Soft Computing in Civil Engineering, 3(2), 76-97.
  49. Binder, D.M. Ceperley, J.-P. Hansen, M.H. Kalos, D.P. Landau, D. Levesque, H. Mueller-Krumbhaar, D. Stauffer, J.-J. Weis, Monte Carlo methods in statistical physics, Springer Science & Business Media, 2012.
  50. G. Newcombe, Two-sided confidence intervals for the single proportion: comparison of seven methods, Statistics in Medicine. 17 (1998) 857–872. doi:10.1002/(sici)1097-0258(19980430)17:8<857::aid-sim777>3.0.co;2-e.