تحلیل دینامیکی مخازن استوانه‌ای فولادی با نسبت ارتفاع به قطر متغیر تحت اثر زلزله‌های میدان دور و نزدیک با در نظرگرفتن اندرکنش آب و سازه

نوع مقاله : علمی - پژوهشی

نویسندگان

1 مهندسی عمران- دانشکده مهندسی - دانشگاه زنجان

2 استادیار، دانشکده مهندسی عمران، دانشگاه زنجان

3 گروه مهندسی عمران، دانشکده مهندسی، دانشگاه زنجان.

چکیده

تانک‌های ذخیره سیالات سازه‌های بسیار مهمی برای ذخیره‌ی انواع سیالات در حوزه‌های شهری و صنعتی می‌باشند. از این رو طراحی، ساخت و ارزیابی عملکرد آن‌ها برای شرایط مختلف بسیار حائز اهمیت می‌باشد. در این مطالعه رفتار تانک‌های فولادی با تغییر در نسبت ارتفاع به قطر سازه تحت اثر زلزله‌های میدان دور و نزدیک مورد آنالیز و مطالعه قرار گرفته‌ است. بدین منظور و جهت آنالیز بهتر این سازه‌ها 4 مدل تانک فولادی با نسبت ارتفاع به قطر متفاوت و در حالات خالی و 90% پر با استفاده از نرم‌افزار المان محدود ANSYS مدلسازی شده تحت آنالیز لرزه‌ای قرار گرفته‌اند. برای بررسی بهتر روند تاثیرات لرزه‌ای بر تانک‌های فولادی، زلزله‌های میدان دور و نزدیک انتخاب شده به مقیاس یکسان g5/0 اسکیل شده‌اند. نتایج نشان داد که در حالات خالی تانک با افزایش نسبت ارتفاع به قطر تانک‌های فولادی به بیش از مقدار 1، مقادیر ماکزیمم تغییرمکان‌ها در زلزله‌های میدان دور و نزدیک به یکدیگر نزدیک می‌گردند. همچنین نتایج نشان از اهمیت فوق‌العاده افزوده شدن آب بر پاسخ تانک‌های فولادی تحت اثر زلزله‌های میدان دور برای نسبت ارتفاع به قطر بیش از 1 دارد. در اکثر موارد با افزوده شدن نسبت ارتفاع به قطر سازه و نیز سیال به آنالیز مقادیر تنش‌ اصلی اول و ماکزیمم عکس‌العمل تکیه‌گاهی افقی در دو حالت تحلیل تحت اثرات زلزله‌ی میدان دور و نزدیک به هم نزدیک می‌گردد. نتایج نشان می‌دهد که برای آنالیز و بررسی تانک‌های فولادی تحت اثر زمین‌لرزه بایستی زلزله‌های میدان دور علاوه بر زلزله‌ی میدان نزدیک مورد مطالعه و تحلیل قرار گیرند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Seismic analysis of steel cylindrical tanks with variable height to diameter ratio under the effects of far and near-field earthquakes taking into account the interaction of water and structure

نویسندگان [English]

  • Ehsan Teymouri 1
  • saeed abbasi 2
  • Amir Javad Moradloo 3
1 civil engineering, school of engineering, university of zanjan
2 Assistant Professor, School of Civil Engineering, University of Zanjan, Zanjan, Iran
3 Department of Civil Engineering, School of Engineering, University of Zanjan.
چکیده [English]

Liquid storage tanks are very important structures for storing various types of fluids in urban and industrial areas. Therefore, designing, manufacturing, and evaluating their performance for different conditions is very important. In this study, the behavior of steel tanks with changes in the ratio of height to diameter of the structure under the effects of far and near field earthquakes has been analyzed and studied. For this purpose and for better analysis of these structures, 4 models of steel tanks with different height to diameter ratios and in empty and 90% full states have been subjected to seismic analysis using modeled ANSYS finite element software. To better investigate the trend of seismic effects on steel tanks, selected far and near-field earthquakes have been scaled to the same amount of 0.5g. The results showed that in empty tank conditions, by increasing the ratio of height to diameter to more than 1, the maximum values of displacement in the far and near-field earthquake are close to each other. The results also show the extraordinary importance of adding water to the response of steel tanks due to far-field earthquakes for a height to diameter ratio of more than 1. In most cases, by increasing the ratio of height to diameter of the structure and adding the fluid to the analysis, the values of the first main stress and the maximum reaction of the horizontal abutment in the two modes of analysis under the effects of the far and near-field earthquakes get closer to each other. The results show that in order to analyze and investigate steel tanks affected by earthquakes, in addition to near field earthquakes, far-field earthquakes should be studied and analyzed.

کلیدواژه‌ها [English]

  • Steel tank
  • Far-field earthquake
  • Near-field earthquake
  • Finite Element Method
  • Water-Structure interaction
  • Seismic analysis
[1] A. Rawat, V. Matsagar and A. K. Nagpal. (2020).  "Seismic Analysis of Steel Cylindrical Liquid Storage Tank Using Coupled Acoustic-Structural Finite Element Method For Fluid-Structure Interaction "International Journal of Acoustics and Vibration. 25(1). 27-40.
[2] H. Akatsuka, H. Kobayashi. (2008). “Fire of petroleum tank, etc. by Niigata earthquake, in, Failure Knowledge Database”, Japan Science and Technology Agency.
[3] G.W. Housner. (1963).”The dynamic behavior of water tanks”, Bulletin of the seismological society of America. 53(2).381-387.
[4] N.W. Edwards. (1969). “A procedure for the dynamic analysis of thin walled cylindrical liquid storage tanks subjected to lateral ground motions”, in, University of Michigan, Ann Arbor, MI, USA.
[5] N.M. Newmark, E. (1971). “Rosenblueth, Fundamentals of earthquake engineering”, Prentice-Hall Civil engineering and engineering mechanics series, 12.
[6] J.Y. Yang. (1976). “Dynamic behavior of fluid-tank systems”, in: Civil and Environmental Engineering Rice University, Houston, Texas, USA.
[7] A.S. Veletsos, J. Auyang.(1977). “Earthquake response of liquid storage tanks, in: Advances in Civil Engineering through Engineering Mechanics”, ASCE.1-24.
[8] A.S. Veletsos, A. Kumar. (1984). “Dynamic response of vertically excited liquid storage tanks, in: Proceedings of the eighth world conference on earthquake engineering”, San Francisco, California, USA. 453-459.
[9] F.H. Hamdan.(2000). “Seismic behaviour of cylindrical steel liquid storage tanks”, Journal of Constructional Steel Research. 53. 307-333.
[10] E.C.f. Standardization.(2006). Eurocode 8: Design of structures for earthquake resistance, in: Part 4: Silos, tanks and pipelines EN 1998.
[11] J.C. Virella, L.A. Godoy, L.E. Suárez, (2006). “Fundamental modes of tank-liquid systems under horizontal motions”, Engineering Structures. 28(10). 1450-1461.
[12] R.O. Ruiz, D. Lopez-Garcia, A.A. Taflanidis, (2015). ”An efficient computational procedure for the dynamic analysis of liquid storage tanks”, Engineering Structures. 85. 206-218.
[13] Bagheri, S. and M. Farajian(2016). “The effects of input earthquake characteristics on the nonlinear dynamic behavior of FPS isolated liquid storage tanks”, Journal of Vibration and Control. 24(7). 1-19.
[14] Ruiza,R.O, Lopez-Garciaa, b, D , Taflanidisb, A.A.(2015). “An efficient computational procedure for the dynamic analysis of liquid storage tanks”, Engineering Structures. 85. 206–218
[15] Sukhvarsh Jerath and Mark Lee(2015).” Stability Analysis of Cylindrical Tanks under Static and Earthquake Loading”. Journal of Civil Engineering and Architecture.9. 72-79.
[16] L. Kalani Sarokolayi1, B. Navayineya2, M. Hosainalibegi2, J. Vaseghi Amiri3. (2008).”Dynamic analysis of water tanks with interaction between fluid and structure”. The 14thWorld Conference on Earthquake EngineeringOctober 12-17, Beijing, China
[17] Shekari , M.R., Khaji,N., , Ahmadi M.T. (2010). “On the seismic behavior of cylindrical base-isolated liquid storage tanks excited by long-period ground motions “, Soil Dynamics and Earthquake Engineering. 30(10). 968–980
[18] Teymoori, E., Abbasi, S., Moradloo, J. (2018). Seismic Analysis of Cylindrical Ground Liquid Storage Tanks Incorporating the Effects of Rotational Components of Earthquake” Modares Civil Engineering Journal. 18(4). 251-264.(in Persian)
[19] Tajdaran, A., Sadag, M.H.(2018). Effect of Geometric Parameters on Elastoplastic Buckling of Ground Cylindrical Steel Tanks with Regard to the Fluid and Structure Interaction” Journal of Structural and Construction Engineering. 6(4). 143-161.
[20] Wilson, R.C., Keefer, D.K. (1985).” Predicting areal limits of earthquake-induced landsliding in Evaluating Earthquake Hazards in the Los Angeles RegionâA˘TAn Earth- ˇ Science Perspective”, J.I. Ziony (Editor): U.S. Geological Survey Professional Paper 1360. 317-345.
[21] Zhang , SH., Wang , G.(2013). ” Effects of near-fault and far-fault ground motions on nonlinear dynamic response and seismic damage of concrete gravity dams”, Soil Dynamics and Earthquake Engineering.53. 217-229.
[22] Copra , A. K., Chintanapakdee ,C.(2001). ” Comparing response of SDF systems to near-fault and far-fault earthquake motions in the context of spectral regions”, Earthquake Engineering and Structural Dynamics. 30(12). 1769-89.
[23] Mavroeidis , G. P., Papageorgiou , A. S.(2003). ” A mathematical representation of near-fault ground motions”. Bulletin of the Seismological Society of America. 93(3). 1099-1131.
[24] Wang , G. Q., Zhou , X. Y., Zhang , P. Z., and Igel, H.(2002). ”Characteristics of amplitude and duration for near-fault strong ground motion from the 1999 Chi-Chi, Taiwan earthquake” Soil Dynamics and Earthquake Engineering. 22(1). 73-96.
[25] Somerville , P. G.(2003). ”Magnitude scaling of the near-fault rupture directivity pulse,” Physics of the Earth and Planetary Interiors. 137(1). 201-2012.
[26] Maniatakis , CH. A., Taflampas , I. M., and Spyrakos, C. C.(2008). ” Identification of Near-Fault Earthquake Record Characteristics”, 14th World Conference on Earthquake Engineering ,Beijing, China, 12-17 October.
[27] Akköse , M., Şimşek , E.(2010). ” Non-linear seismic response of concrete gravity dams to near-fault ground motions including dam-water-sediment-foundation interaction”, Applied Mathematical Modelling.34(11). 3685-3700.
[28] Wang, G., Zhang, SH., Wang, CH., Yu, M.(2014). ”Seismic performance evaluation of dam-reservoir-foundation systems to near-fault ground motions". Natural Hazard. 72. 651-674.
[29] Jadhav, M.B.; Jangid, R.S.(2006). ” Response of base-isolated liquid storage tanks to near-fault motions “.  Structural Engineering and Mechanics. 23(6). 615-634
[30] Gorai, S., Maity, D.(2019). ”Seismic response of concrete gravity dams under near field and far field ground motions”, Engineering Structures. 196. 1-16.
[31] Naeim , F.(2001). “The Seismic Design Handbook".  2th ed, Kluwer Academic Publishers.