تاثیر اندرکنش خاک و سازه بر پاسخ‌های لرزه‌ای طولی پل‌های معلق کنترل شده با میراگر بهینه جرمی تنظیم شونده

نوع مقاله : علمی - پژوهشی

نویسندگان

گروه عمران/دانشکده فنی و مهندسی/دانشگاه خوارزمی

چکیده

پل‌های معلق به دلیل دارا بودن دهانه‌های بلند، برج‌های مرتفعی را در ساختار هندسی خود شامل می‌شوند. ارتعاع زیاد این برج‌ها باعث می‌شود تا در برابر بارهای دینامیکی، مانند تحریکات لرزه‌ای، پاسخ‌های جابه‌جایی قابل توجهی را تجربه کنند، که می‌توانند باعث بروز اختلال در عملکرد آنها شوند. برای فائق آمدن بر این مشکل، می‌توان از سیستم‌های کنترل کننده‌ی ارتعاشات، مانند میراگر جرمی تنظیم شونده که یک سیستم غیرفعال است، استفاده کرد. عملکرد این سیستم‌ها بر اساس شاخص‌های کارایی که بر حسب پاسخ‌های سازه تعریف می‌شوند، قابل بررسی هستند. از سوی دیگر، میراگرها برای اینکه بتوانند مطلوب‌ترین عملکرد خود را در کاهش ارتعاشات ارائه دهند، نیازمند این هستند که پارامترهای خود را به مقادیر بهینه سوق دهند؛ این مهم را می توان با استفاده از الگوریتم‌های بهینه-یابی فراابتکاری انجام داد. در این تحقیق، پاسخ‌های لرزه‌ای طولی جابه‌جایی و انرژی پل معلق گلدن گیت، با درنظر گرفتن اندرکنش خاک و سازه، با استفاده از میراگر جرمی تنظیم شونده که مشخصات آن با استفاده از الگوریتم فراابتکاری استاد-دانش‌آموز-معلم بهینه، و توسط شاخص‌های انرژی محور که تعریف شده‌اند، مورد بررسی قرار گرفت. نتایج حاکی از آن بود که با نرم شدن خاک بستر مود ابتدایی سازه نقش به مراتب مهمتری در پاسخ نهایی ایفا می‌کند. همچنین، میراگر جرمی تنظیم شونده بر اساس شاخص‌های انرژی تعریف شده، یک سیستم کنترلی کاملا موفق جهت کنترل ارتعاشات سیستم برج-شمع برای تمامی حالات خاک بستر در نظر گرفته شده، بود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

The effect of soil-structure interaction on longitudinal seismic responses of suspension bridges controlled by optimal TMD

نویسندگان [English]

  • Hamed Alizadeh
  • Seyed hossein hosseini lavassani
Civil engineering department/Engineering Faculty /Kharazmi university
چکیده [English]

Suspension bridges contain high towers due to having long span. Large height makes them to experience remarkable displacement responses against dynamic loading, like seismic excitation which disturbs their performance. In order to overcome this problem, control strategies, like tuned mass damper or in brief TMD as a passive system can be used. The performance of these systems can be addressed by the indices defined according to structural responses. On the other hand, its parameters should be adjusted to their optimum values to providing the best performance accessible by the meta heuristic algorithm. Here, the seismic displacement and energy responses of the Golden gate bridge considering soil-structure interaction were investigated using the optimum TMD optimized by observer teacher learner algorithm, and the performance of it was addressed by the energy indices. The results indicated that by increasing the softness of the bed soil the first mode plays the dominant role in the final response. Also, TMD was a successful system to control the vibration of the tower-pier system according to the defined energy indices for all the conditions of the bed soil considered. Suspension bridges contain high towers due to having long span. Large height makes them to experience remarkable displacement responses against dynamic loading, like seismic excitation which disturbs their performance. In order to overcome this problem, control strategies, like tuned mass damper or in brief TMD as a passive system can be used. The performance of these systems can be addressed by the indices defined according to structural responses.

کلیدواژه‌ها [English]

  • Suspension bridge
  • tuned mass damper
  • efficiency indicators
  • meta-heuristic algorithm
  • soil-structure interaction
[1] Abdel-Ghaffar, A.M., Rubin, L.I. (1983). Vertical seismic behavior of suspension bridge. Earthq Eng. Struct. Dyn, 11(1), 1-19.
[2] Rahman Shokrgozar, H., Naeim, K., Imani Kalasar, H. (2017). Comparison of the Efficiency of Tuned Mass and Tuned Liquid Dampers at High-Rise Structures under Near and Far Fault Earthquakes, Journal of structural and construction, 3(4), 105-119.
[3] Amini, F., Doroudi, R. (2010). Control of a building complex with magneto-rheological dampers and tuned mass damper. Structural Engineering and Mechanics, 36(2), 181–195.
[4] Elias, S., Matsagar, V. (2017). Effectiveness of tuned mass dampers in seismic response control of isolated bridges including soil-structure interaction. Latin American Journal of Solids and Structures, 14(13), 2324–2341.
[5] Alizadeh, H., Lavasani, S.H.H., Kordi, A. (2018). Investigating the performance of tuned mass damper on tall buildings under pulse type ground motions. In: 3rd.International Conference & 4th.national Conference on Civil Engineering, Architecture and Urban Design, Tabriz: Tabriz Islamic Art University.
[6] Pourzeynali, S., Lavasani, H.H., Modarayi, A.H. (2007). Active control of high rise building structures using fuzzy logic and genetic algorithms. Engineering Structures, 29(3), 346–357.
[7] Shahrouzi, M., Aghabagloua, M., Rafiee, F. (2017). Observer-teacher-learner-based optimization: An enhanced metaheuristic for structural sizing design. Struct. Eng. Mech., 62(5), 537-550.
[8] Alizadeh, H., Hosseni Lavassani, S.H. (2021). Flutter control of long span suspension bridges in time domain using optimized TMD. Int J Steel Struct (2021). https://doi.org/10.1007/s13296-021-00469-y.
[9] Bathaei A., Ramezani M., Ghorbani-Tanha A.K. (2017) Vibration control of the College Bridge using tuned mass dampers. IQBQ, 16 (20), 21-32.
[10] Alizadeh, H., Lavasani, H.H., Pourzeynali, S. (2018). Flutter instability control in suspension bridge by TMD. The Proceedings of the 11th International Congress on Civil Engineering., Tehran: Tehran university.
[11] Lavassani, H.H., Alizadeh, H., Homami, P. (2020). Optimizing tuned mass damper parameters to mitigate the torsional vibration of a suspension bridge under pulsetype ground motion: A sensitivity analysis. Journal of Vibration and Control, 26(11-12), 1054-1067. 
[12] Lavassani, H.H., Alizadeh, H., Doroudi, R., Homami, P. (2020). Vibration control of suspension bridge due to vertical ground motions. Advances in Structural Engineering, 23(12), 2626-2641. 
[13] Alizadeh, H., Lavasani, H.H. (2020). TMD parameters optimization in different length suspension bridges using OTLBO algorithm under near and far field ground motions. Earthquakes and Structures, 18(5), 625-635.
[14] Xu L., Gao Q., Zheng J., Ding Ch., Liu K. (2020). Seismic response mitigation of a long-span tower bridge with two types of constraint system. Advances in Civil Engineering, vol. 2020, Article ID 8846467, 12 pages, 2020. https://doi.org/10.1155/2020/8846467.
[15] Casciati F., Giuliano F. (2009). Performance of multi-TMD in the towers of suspension bridges. Journal of Vibration and Control, 15(6), 821-847.
[16] Yang MG., Cai CS. (2015). Longitudinal vibration control for a suspension bridge subjected to vehicle braking forces and earthquake excitations based on magnetorheological dampers. Journal of Vibration and Control, 22(17), 3659-3678. 
[17] Altin, S., Kaptan, K., Tezcan, S.S. (2011). Dynamic analysis of suspension bridges and full scale testing. Open Journal of Civil Engineering, 2, 58-67.
[18] Abdel-Ghaffar, A.M. (1980). Vertical vibration analysis of suspension bridges. Journal of Structural Division, 106(10), 2053-2075.
[19] Debbarma, R., Das, D., (2016) Vibration control of building using multiple tuned mass dampers considering real earthquake time history. International journal of civil and environmental engineering, 10(6), 694-704.
[20] Bortoluzzi, D., Casciati, S., Elia, L., Faravelli, L. (2015). Design of a TMD solution to mitigate wind-induced local vibrations in an existing timber footbridge. Smart Structures and Systems, 16(3), 459-478.
[21] Lievens, K., Lombaert, G., De-Roeck, G., Van-den-Broeck, P. (2016). Robust design of a TMD for the vibration serviceability of a footbridge. Engineering Structures, 123, 408–418.
[22] Elias, S. (2018). Seismic energy assessment of buildings with tuned vibration absorbers. Shock and Vibration, Volume 2018, Article ID 2051687.
[23] Bhardwaja, A., Matsagar, V., Nagpal, A.K. (2016). Energy balance assessment of tall buildings equipped with friction dampers for earthquake response control. Journal of Structural Engineering, 43(1), 91-101.
[24] Pecker A. (2007). Soil Structure Interaction. In: Pecker A. (eds) Advanced Earthquake Engineering Analysis. CISM International Centre for Mechanical Sciences, vol 494. Springer, Vienna. https://doi.org/10.1007/978-3-211-74214-3_3.
[25] Khazaei, J., Amiri, A. (2017). Evaluation of the dynamic responses of high rise buildings with respect to the direct methods for soil-foundation-structure interaction effects and comparison with the approximate methods. Journal of structural and construction, 4(2), 106-122. 
[26] Etedadi Aliabadi, F., Memarpour, M.M. (2019). Investigation of the Seismic Behavior of Framed Tube Buildings Considering Soil Structure Interaction. Journal of structural and construction, 6(2), 119-140.
[27] Rubin, L.I., Abdel-Ghaffar, A.M., Scanlan, R.H. (1983). Earthquake response of long-span suspension bridges. Princeton: Department of Civil Engineering, Princeton University, 1-576.
[28] Grimaz, S., MaliSan, P. (2014). Near field domain effects and their consideration in the international and Italian seismic codes. Bollettino di Geofsica Teorica ed Applicata, 55(4), 717-738.   
[29] Gu, M., Chang, C., Wu, W., Xiang, H. (1998). Increase of critical flutter wind speed of long-span bridges using tuned mass dampers. Journal of Wind Engineering and Industrial Aerodynamics, 73, 111–123.
[30] Kwon, SD., Park, KS. (2004). Suppression of bridge flutter using tuned mass dampers based on robust performance design. Journal of Wind Engineering and Industrial Aerodynamics, 92, 919–934.
[31] Pourzeynali, S., Datta, TK. (2002). Control of flutter of suspension bridge deck using TMD. Wind and Structure, 5(5), 407-422.
[32] Miao, F., Tian, P., Guan, P. (2017). Longitudinal damping parameter sensitivity analysis of self-anchored suspension bridge with viscous dampers. International Journal of Engineering and Applied Sciences, 4(5), 110-113.  
[33] Yang, MG., Chen ZQ., Hua XG. (2011). An experimental study on using MR damper to mitigate longitudinal seismic response of a suspension bridge. Soil Dynamics and Earthquake Engineering, 31, 1171–1181.