بررسی تاثیر حرارت بر خواص مکانیکی بتن ژئوپلیمر سرباره ای حاوی نانوسیلیس و الیاف پلی اُلفین

نوع مقاله : علمی - پژوهشی

نویسندگان

1 دانشجوی دکتری عمران سازه، گروه مهندسی عمران، واحد چالوس، دانشگاه ازاد اسلامی، چالوس، ایران

2 گروه مهندسی عمران، واحد چالوس، دانشگاه ازاد اسلامی، چالوس، ایران

3 دانشگاه آراد اسلامی واحد لاهیجان،ایران

چکیده

تولید سیمان همواره با چالش های زیست محیطی ناشی از انتشار گاز دی اکسید کربن همراه بوده است، از طرفی تولید سیمان فرایندی انرژی بر است و منجر به مصرف سوخت های فسیلی فراوان می گردد، در راستای حل این مشکل، تولید بتن ژئوپلیمر در دستور کار محققین قرار گرفت تا ضمن کاهش اثرات منفی ناشی از تولید سیمان، دارای خواصی برتر نسبت به بتن معمولی باشد. ماتریس سیمان ژئوپلیمری به دلیل تولید ژل های هیدراته فراوان، دارای تراکم و انسجام بیشتری نسبت به ماتریس سیمان پرتلند می باشد و این امر دلیل اصلی افزایش مقاومت این نوع از بتن در مواجهه با حرارت بالا نسبت به بتن معمولی است. در این پژوهش به بررسی آزمایشگاهی تاثیر حرارت بر خصوصیات مکانیکی بتن ژئوپلیمر سرباره ای حاوی0 تا 8 درصد نانوسیلیس و 1 تا 2 درصد الیاف پلی الفین در سن عمل آوری 90 روزه پرداخته شد و بمنظور بررسی ریزساختاری از آزمایش هایXRF، XRD و SEM استفاده گردید. در طرح بهینه بتن ژئوپلیمر سرباره ای(حاوی 8 درصد نانوسیلیس و فاقد الیاف)، شاهد کاهش 8 و 44 درصدی مقادیر نتایج بعد و قبل از حرارت در آزمون های مقاومت فشاری و تعیین سرعت پالس التراسونیک بتن بودیم در حالیکه در بتن کنترل، کاهش نتایج به میزان 38 و 37 درصد رسید. در بتن ژئوپلیمر سرباره ای حاوی 8 درصد نانوسیلیس و 2 درصد الیاف، مقاومت کششی و مدول الاستیسیته برابر 14 و 34 درصد کاهش نتایج بعد و قبل از حرارت را نشان داد، برای بتن کنترل این ارقام به میزان 51 و 59 درصد کاهش در نتایج حاصله رسید، نتایج آزمون ضربه چکش افتان نیز کاهش مقاومت بتن در معرض حرارت در برابر ضربات چکش را دارا بود. در پایان، بررسی های ریزساختاری در همپوشانی و هماهنگی با نتایج حاصله از آزمون های این پژوهش بودند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Evaluate Effect Of Temperature On mechanical properties of Geopolymer Concretes blast furnace slag by using nanosilica and polyolefin fiber

نویسندگان [English]

  • mohammadhossein mansourghanaei 1
  • morteza biklaryan 2
  • Alireza Mardookhpour 3
1 Ph.D Student in Civil Engineering, Department of Civil Engineering, Chalous Branch, Islamic Azad University, Chalous, Iran
2 Department of Civil Engineering, Chalous Branch, Islamic Azad University, Chalous, Iran
3 Islamic Azad University of Lahijan ,Iran
چکیده [English]

Cement production has always been associated with environmental challenges due to carbon dioxide emissions. On the other hand, cement production is an energy-intensive process and leads to the consumption of abundant fossil fuels. In order to solve this problem, the production of geopolymer concrete is on the agenda. The researchers decided to reduce the negative effects of cement production and have superior properties than ordinary concrete . Geopolymer cement matrix, due to the production of abundant hydrated gels, has a higher density and cohesion than the Portland cement matrix, and this is the main reason for increasing the resistance of this type of concrete to high heat compared to ordinary concrete. In this study, the effect of heat on the mechanical properties of slag geopolymer concrete containing 0 to 8% nanosilica and 1 to 2% polyolefin fibers at 90 days of processing age was investigated and XRF, XRD and SEM experiments were used to study the microstructure. In the optimal design of slag geopolymer concrete (containing 8% nanosilica and free of fibers), we saw a decrease of 8 and 44% in the values after and before heating in compressive strength tests and determination of ultrasonic pulse speed of concrete, while in control concrete, the results decreased Reached 38 and 37 percent. In slag geopolymer concrete containing 8% nanosilica and 2% fibers, tensile strength and modulus of elasticity equal to 14 and 34% showed results after and before heating, for control concrete these figures decreased by 51 and 59% in the results. Received, the results of the falling hammer impact test also had a reduction in the resistance of heat-exposed concrete to hammer blows. In the end, the microstructural studies were in overlap and in coordination with the results of the tests of this study.

کلیدواژه‌ها [English]

  • Geopolymer Concrete
  • Blast furnace slag
  • Nanosilica
  • Polyolefin fibers
  • Mechanical properties
[1] Nosrati, A., Zandi, Y., Shariati, M., Khademi, K., Aliabad, M., Marto, A., & Khorami, M. (2018). Portland cement structure and its major oxides and fineness. Smart structures and systems, 22(2), 425-432.
[2] Davidovits, J. (2008). Geopolymer chemistry and application 2nd ed. Institut Géopolymère, France.
[3] Neupane, N., Chalmers, D., & Kidd, P. (2018). High-strength geopolymer concrete—properties. advantages and challenges. Advances in Materials, 7(2), 15-25.
[4] Vora, P., & Urmil V, D. (2013). Parametric studies on compressive strength of geopolymer concrete. Procedia Engineering, 51, 210-219.
[5] Yunsheng, Z., Sun , W., & Li , Z. (2010). Composition design and microstructural characterization of calcined kaolin-based geopolymer cement. Applied Clay Science, 47(3-4), 271-275.
[6] Scrivener, K., & R. James, K. (2008). Innovation in use and research on cementitious material. Cement and concrete research, 38(2), 128-136.
[7] Li, H., Xiao, H., Yuan, J., & OU, J. (2004). Microstructure of cement mortar with nano-particles. Composites Part B: Engineering, 35(2), 185-189.
[8] Adak, D., Sarkar, M., & Mandal, S. (2017). Structural performance of nano-silica modified fly-ash based geopolymer concrete. Construction and Building Materials, 135, 430-439.
[9] Ekinci, E., Türkmen, İ., Kantarci, F., & Burhan Karakoç, M. (2019). The improvement of mechanical, physical and durability characteristics of volcanic tuff based geopolymer concrete by using nano silica, micro silica and Styrene-Butadiene Latex additives at different ratios. Construction and Building Materials, 201, 257-267.
[10] Delavari, S., Jahanger, H., & Daneshvar, M. (2018). Comparison the Effect of Particle Tires and Powder of Worn Tires on  Compressive Strength of Concrete (In Persian). 4th International Conference on Structural Engineering. Iran,Tehran.
[11] Chellapandian, M., Mani, A., & Suriya Prakash, S. (2020). Effect of macro-synthetic structural fibers on the flexural behavior of concrete beams reinforced with different ratios of GFRP bars. Composite Structures, 254, 112790.
[12] Caetano, H., Ferreira, G., Rodrigues, J., & Pimienta, P. (2019). Effect of the high temperatures on the microstructure and compressive strength of high strength fibre concretes. Construction and Building Materials, 199, 717-736.
[13] Bakhtiyari, S., Allahverdi, A., Rais-Ghasemi, M., Zarrabi, B., & Parhizkar, T. (2011). Self-compacting concrete containing different powders at elevated temperatures–Mechanical properties and changes in the phase composition of the paste. Thermochimica acta, 514(1-2), 74-81.
[14] Amiri, M., & Aryanpour, M. (2019). The Effects of High Temperatures on Concrete Performance based on Nanostructural Changes in Calcium Silicate Hydrate (C-S-H). Concrete Research, 12(4), 69-80.
[15] Siddique, R., & Kaur, D. (2012). Properties of concrete containing ground granulated blast furnace slag (GGBFS) at elevated temperatures. Journal of Advanced Research, 3(1), 45-51.
[16] Brindley, G. (1975). Thermal transformations of clays and layer silicates, in: Proceedings of International Clay Conference Applied Publishing Ltd. Wilmette, Illinois,USA.
[17] Provis, J. L., & Van Deventer, J. S. (2009). Introduction to geopolymers. In Geopolymers (pp. 1-11). Woodhead Publishing.‏
[18] F. Huseien, G., Mirza, J., Ismail, M., Ghoshal, S., & Azreen Mohd Ariffin, M. (2018). Effect of metakaolin replaced granulated blast furnace slag on fresh and early strength properties of geopolymer mortar. Ain Shams Engineering Journal, 9(4), 1557-1566.
[19] Tajodeni, M. (2016). , In vitro evaluation of the effect of adding nanosilica with different specific surfaces on physical and mechanical parameters of soil-cement aggregates. Sharif Journal of Civil Engineering, 24-2(1/1), 13-22.
[20] Alberti, M., Enfedaque, A., & Gálvez, J. (2015). Improving the reinforcement of polyolefin fiber reinforced concrete for infrastructure applications. Fibers, 3(4), 504-522.
[21] Pilehvar, S., DuyCao, V., M.Szczotok, A., Carmona, M., Valentini, L., Lanzón, M., . . . LenaKjøniksen, A. (2018). Physical and mechanical properties of fly ash and slag geopolymer concrete containing different types of micro-encapsulated phase change materials. Construction and Building Materials, 173, 28-39.
[22] Deb, P., Nath, P., & Sarker, P. (2015). Drying shrinkage of slag blended fly ash geopolymer concrete cured at room temperature. Procedia Engineering, 125, 594-600.
[23] Prasanna Venkatesan, R., & Pazhani, K. (2016). Strength and durability properties of geopolymer concrete made with Ground Granulated Blast Furnace Slag and Black Rice Husk Ash. KSCE Journal of Civil Engineering, 20(6), 2384-2391.
[24] Ehsani, A., Nili, M., & Shaabani , K. (2017). Effect of nanosilica on the compressive strength development and water absorption properties of cement paste and concrete containing Fly Ash. KSCE Journal of Civil Engineering, 21(5), 1854-1865.
[25] Hassan, A., Arif, M., & Shariq , M. (2020). Mechanical Behaviour and Microstructural Investigation of Geopolymer Concrete After Exposure to Elevated Temperatures. Arabian Journal for Science and Engineering, 45(5), 3843-3861.
[26] Malkawi, A. B., Nuruddin, M. F., Fauzi, A., Almattarneh, H., & Mohammed, B. S. (2016). Effects of alkaline solution on properties of the HCFA geopolymer mortars. Procedia engineering148, 710-717.‏
[27] Mehdipour, S., M. Nikbin, I., Dezhampanah, S., Mohebbi, R., Moghadam, H., Charkhtab, S., & Moradi, A. (2020). Mechanical properties, durability and environmental evaluation of rubberized concrete incorporating steel fiber and metakaolin at elevated temperatures. Journal of Cleaner Production, 254.
[28] M. Nikbin, I., Mehdipour, S., Dezhampanah, S., Mohammadi, R., Mohebbi, R., Habibi, H., & Sadrmomtazi, A. (2020). Effect of high temperature on mechanical and gamma ray shielding properties of. Radiation Physics and Chemistry, 174.
[29] Wang, K., Shah, S., & Phuaksuk, P. (2002). Plastic shrinkage cracking in concrete materials-Influence of fly ash and fibers. ACI Materials Journal, 99(5), 512-513.
[30] Kwan, W., Ramli, M., Kam, K., & Zailan Sulieman, M. (2012). Influence of the amount of recycled coarse aggregate in concrete design and durability properties. Construction and Building Materials, 26(1), 565-573.
[31] Ren, W., Xu, J., & Bai, E. (2016). Strength and ultrasonic characteristics of alkali-activated fly ash-slag geopolymer concrete after exposure to elevated temperatures. Journal of Materials in Civil Engineering, 28(2), 04015124.
[32] Sahranavard, S., Hajekazemi, H., & Jahangir, H. (2013). Relationship for Absorbed Impact Energy in Concrete Matrix (In Persian). 7th National Congress on Civil Engineering. Iran,Zanhan.
[33] Assaedi, H., Alomayri, T., & Shaikh, F. (2019). Influence of Nano Silica Particles on Durability of Flax Fabric Reinforced Geopolymer Composites. Materials, 12(9), 1459.
[34] Hongjian, D., Suhuan , D., & Liu, X. (2014). Durability performances of concrete with nano-silica. Construction and building materials, 73, 705-712.
[35] Noushini, A., Castel, A., & Gilbert, R. I. (2019). Creep and shrinkage of synthetic fibre-reinforced geopolymer concrete. Magazine of Concrete Research71(20), 1070-1082.‏
[36] Noushini, A., Hastings, M., Castel, A., & Aslani, F. (2018). Mechanical and flexural performance of synthetic fibre reinforced geopolymer concrete. Construction and Building Materials186, 454-475.‏
[37] Rivera, O. G., Long, W. R., Weiss Jr, C. A., Moser, R. D., Williams, B. A., Torres-Cancel, K., ... & Allison, P. G. (2016). Effect of elevated temperature on alkali-activated geopolymeric binders compared to portland cement-based binders. Cement and Concrete Research90, 43-51.‏
[38] Kodur, V. K., & McGrath, R. (2006). Effect of silica fume and lateral confinement on fire endurance of high strength concrete columns. Canadian journal of civil engineering33(1), 93-102.‏
[39] Shirgir, B., Alizadeh Goudarzi, H., & Shirgir, V. (2016). An Experimental Study on the Abrasion Resistance of Pervious Concrete Containing Nano SiO2 in pavement. Quarterly Journal of Transportation Engineering8(2), 291-302.‏
[40] Moradikhou , A., Hosseini , M., Mousavi Kashi, A., Emami , F., & Esparham , A. (2020). Effect of Simple and Hybrid Polymer Fibers on Mechanical Strengths and High-temperature Resistance of Metakaolin-based Geopolymer Concrete. Modares Civil Engineering journal, 20(2), 147-164.
[41] Sadr Momtazi, A., Kohani Khoshkbijari, R., & Lotfi Omran, O. (2015). Mechanical and Durability Properties of Self Compacting Concrete containing Nano Silica Particles considering Optimum Percentages of Fibers. Concrete Research, 8(2), 19-34.
[42] Fallah Hosseini, S., & Hajikarimi, P. (2019). Investigation on the Effect of Volume, Length and Shape of Polyolefin Fibers on Mechanical Characteristics and Fracture Properties of High-Strength Concrete. Concrete Research, 12(1), 59-70.
[43] Dabbagh, H., & Akbarpour, S. (2017). Behavior of Structural Lightweight Concrete Containing Nano Silica and Steel Fibers under Compressive Monotonic Loading. Concrete Research10(1), 35-46.‏
[44] Picazo, Á., Alberti, M., Galvez, J., Enfedaque, A., & Vega, A. (2019). The Size Effect on Flexural Fracture of Polyolefin Fibre-Reinforced Concrete. Applied Sciences, 9(9).