بررسی اثر استفاده از ضایعات صنعت سنگ استان لرستان بر عملکرد بتن خودتراکم مقاومت بالا

نوع مقاله : علمی - پژوهشی

نویسندگان

1 گروه مهندسی عمران، دانشگاه لرستان، خرم آباد، ایران

2 گروه مهندسی عمران، دانشکده فنی و مهندسی، دانشگاه آیت ا... بروجردی، بروجرد، ایران.

3 استادیار، گروه مهندسی عمران، دانشگاه لرستان

چکیده

تولید و انباشت روزافزون ضایعات صنعت سنگ گرانیت سبب ترغیب محققان به استفاده از آنها در بتن های سازگار با محیط زیست برای کاهش اثرات زیست محیطی گردیده است. از اینرو در این مطالعه به بررسی آزمایشگاهی استفاده از سنگدانه های گرانیتی موجود در استان لرستان در بتن خودتراکم مسلح به الیاف فولادی پرداخته شده است. برای ارزیابی خواص بتن تازه و سخت شده از آزمایش های جعبه L-شکل، جعبه U-شکل، مقاومت فشاری، مقاومت خمشی، شکلپذیری، طاقت خمشی و مقاومت کششی استفاده شده است. نتایج آزمایش ها بر روی بتن تازه نشان داده است که بتن خودتراکم الیافی ساخته شده قابلیت عبور و کارایی مطلوبی داشته و تمامی طرح های اختلاط در محدوده قابل قبول قرار گرفته اند. از سوی دیگر استفاده از ضایعات گرانیت سبب بهبود خصوصیات بتن سخت شده نیز شده است. استفاده همزمان از سنگدانه های گرانیتی و الیاف فولادی سبب افزایش مقاومت فشاری نمونه های گردیده است. قابل ذکر است که اثرات استفاده همزمان در بهبود مقاومت کششی، عملکرد خمشی و طاقت خمشی نمونه ها نسبت به مقاومت فشاری قابل توجه تر بوده است. در تیرهای بدون الیاف فولادی، بلافاصله پس از رخ‌دادن اولین ترک شکست ترد اتفاق افتاده است اما با افزایش درصد الیاف فولادی مورد استفاده در نمونه ها شکل پذیری افزایش یافته و نوع شکست بصورت خمشی شکل‌پذیر رخ داده است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Effect of using dimensional stone waste sourced from Lorestan Province on the performance of high-strength self-compacting concrete

نویسندگان [English]

  • Mostafa NazariFarokhi 1
  • Masoud Ahmadi 2
  • Ahmad Dalvand 3
1 Department of Civil Engineering, Lorestan University, Khorramabad, Iran
2 Department of Civil Engineering, Ayatollah Boroujerdi University, Boroujerd, Iran
3 Assistant professor, faculty of engineering, lorestan university,khorramabad, iran
چکیده [English]

Producing enormous quantities and continuous stockpiling of granite industrial by-product enforced researchers to utilize this waste in a sustainable state in concrete to diminish its adverse impacts on the ecosystem. This study aims to experimentally investigate the possibilities of reusing granite waste sourced from Lorestan Province in fiber-reinforced self-compacting cementitious composite using hooked-end steel fibers. The L-box and U-box tests were performed to assess the fresh properties of mixes, whereas compressive strength, flexural strength, ductility, flexural toughness, and tensile strength tests were conducted for measuring the hardened properties of self-compacting concrete mixes. Results of the fresh properties tests for all of the steel fiber reinforced-recycled aggregate mixtures were found within the satisfactory limit of standard. In other words, the incorporation of granite waste in self-compacting concrete augmented the hardened properties. It should be noted that the effects of simultaneous use of granite waste and steel fiber in improving the tensile strength, flexural performance, ductility, and bending toughness of the specimens are higher than the compressive strength. In specimens without steel fiber, brittle failure occurred immediately after the formation of the first crack. With the increasing percentage of steel fibers in the samples, the ductility increased, and the ductile failure occurred in samples.

کلیدواژه‌ها [English]

  • Self-Compacting Concrete
  • Granite waste
  • Steel Fiber
  • Mechanical properties
  • fresh properties
[1]  Okamura, Hajime, Ozawa, Takeaki, Ouchi, Masahiro. (2000). Self-compacting concrete. Structural Concrete, 1 (1), 3-17.
[2]  Jain, Abhishek, Gupta, Rajesh, Chaudhary, Sandeep. (2020). Sustainable development of self-compacting concrete by using granite waste and fly ash. Construction and Building Materials, 262, 120516.
[3]  Sharma, Rahul, Khan, Rizwan. (2017). Sustainable use of copper slag in self compacting concrete containing supplementary cementitious materials. Journal of Cleaner Production, 151, 179-192.
[4]  Jain, Abhishek, Gupta, Rajesh, Chaudhary, Sandeep. (2019). Performance of self-compacting concrete comprising granite cutting waste as fine aggregate. Construction and Building Materials, 221, 539-552.
[5]  Jain, Abhishek, Siddique, Salman, Gupta, Trilok, Jain, Sudhir, Sharma, Ravi, Chaudhary, Sandeep. (2020). Evaluation of concrete containing waste plastic shredded fibers: Ductility properties. Structural Concrete, 22(1), 566-575.
[6]  Taji, Iman, Ghorbani, Saeid, Brito, Jorgede, Tam, Vivian, Sharifi, Sohrab, Davoodi, Ali, Tavakkolizadeh, Mohammadreza. (2019). Application of statistical analysis to evaluate the corrosion resistance of steel rebars embedded in concrete with marble and granite waste dust. Journal of Cleaner Production, 210, 837-846.
[7]  Aarthi, Karmegam, Arunachalam, Kalidas. (2018). Durability studies on fibre reinforced self compacting concrete with sustainable wastes. Journal of Cleaner Production, 174, 247-255.
[8]  Zafar, Muhammad Saeed, Javed, Usman, Khushnood, Rao Arsalan, Nawaz, Adnan, Zafar, Tayyab. (2020). Sustainable incorporation of waste granite dust as partial replacement of sand in autoclave aerated concrete. Construction and Building Materials, 250, 118878.
[9]  Mendoza, Joan-Manuel, Feced, Maria, Feijoo, Gumersindo, Josa, Alejandro, Gabarrell, Xavier, Rieradevall, Joan. (2014). Life cycle inventory analysis of granite production from cradle to gate. The International Journal of Life Cycle Assessment, 19, 153–165.
[10]        Ramos, Telma, Matos, Ana, Schmidt, Bruno, Rio, João, Sousa-Coutinho, Joana. (2013). Granitic quarry sludge waste in mortar: Effect on strength and durability. Construction and Building Materials, 47, 1001-1009.
[11]        Menezes, Romualdo, Ferreira, Heber, Neves, Gelmires, Lira, Helio, Ferreira, Heber. (2005). Use of granite sawing wastes in the production of ceramic bricks and tiles. Journal of the European Ceramic Society, 25(7), 1149-1158.
[12]        Montani, Carlo (2016). XXVII World Marble and Stones Report. Aldus Casa di Edizioni, Carrara.
[13]        Karmegam , Aarthi, Kalidass, Arunachalam, Ulaganathan, Dileepan. (2014). Utilization of granite sawing waste in self compacting concrete. Gradevinar, 66(11), 997-1006.
[14]        Singh, Sarbjeet, Khan, Shahrukh, Khandelwal, Ravindra, Chugh Arun, Nagar, Ravindra. (2016). Performance of sustainable concrete containing granite cutting waste. Journal of Cleaner Production, 119, 86-98.
[15]        Ghannam, Shehdeh, Najm, Husam, Vasconez, Rosa. (2016). Experimental study of concrete made with granite and iron powders as partial replacement of sand. Sustainable Materials and Technologies, 9, 1-9.
[16]        Vijayalakshmi, M, Sekar, Anandh, Ganesh, Ganapathy. (2013). Strength and durability properties of concrete made with granite industry waste. Construction and Building Materials, 46, 1-7.
[17]        Ghorbani, Saeid, Taji, Iman, Brito, Jorgede, Negahban, Mohammadamin, Ghorbani, Sahar, Tavakkolizadeh, Mohammadreza, Davoodi, Ali. (2019). Mechanical and durability behaviour of concrete with granite waste dust as partial cement replacement under adverse exposure conditions. Construction and Building Materials, 194, 143-152.
[18]        Singh, Sarbjeet, Nagar, Ravindra, Agrawal, Vinay, Rana, Aditya, Tiwari, Anshuman. (2016). Sustainable utilization of granite cutting waste in high strength concrete. Journal of Cleaner Production, 116, 223-235.
[19] Singh, Sarbjeet, Nande, Neha, Bansal, Prakhar, Nagar, Ravindra. (2017). Experimental Investigation of Sustainable Concrete Made with Granite Industry By-Product. Journal of Materials in Civil Engineering, 29(6), 04017017.
[20]        Elyamany, Hafez, M. Abd Elmoaty, Abd Elmoaty, Mohamed, Basma. (2014). Effect of filler types on physical, mechanical and microstructure of self compacting concrete and Flow-able concrete. Alexandria Engineering Journal, 53(2), 295-307.
[21]        Sadek, Dina, El-Attar, Mohamed, Ali, Haitham. (2016). Reusing of marble and granite powders in self-compacting concrete for sustainable development. Journal of Cleaner Production, 121, 19-32.
[22] کشوری، فهیمه، حیاتی، محمد، بارانی، کیانوش. (1398). برنامه‌ریزی راهبردی صنعت سنگ استان لرستان. نشریه مهندسی معدن، 14(43)، 34-48.
[23] سپهوند، زهرا، بارانی، کیانوش. (1397). تولید سنگ مصنوعی از ضایعات سنگ تزئینی. نشریه مهندسی عمران امیرکبیر، 50(3)، 460-453.
[24]        BS EN 12350-10. (2010). Testing Fresh Concrete, Self-Compacting Concrete, L-BoX Test, London, UK.
[25]        Mastali, Mohammad, Dalvand, Ahmad, Sattarifard, Alireza. (2016). The impact resistance and mechanical properties of reinforced self-compacting concrete with recycled glass fiber reinforced polymers. Journal of Cleaner Production, 124, 312-324.
[26]        Hama, Sheelan, Hilal, Nahla. (2017). Fresh properties of self-compacting concrete with plastic waste as partial replacement of sand. International Journal of Sustainable Built Environment, 6(2), 299-308.
[27]        UNI (Ente Nazionale Italiano di Unificazione). (2003). Testing fresh self compacting concrete: Determination of confined flowability in U-shape box. UNI 11044. Milano, Italy: UNI.
[28]        Yaseri, Sajad, Mahdikhani, Mahdi, Jafarinoor, Ashkan, Masoomi Verki, Vajihollah, Esfandyari, Mostafa, Ghiasian, Seyed Mohsen. (2018). The development of new empirical apparatuses for evaluation fresh properties of self-consolidating mortar: Theoretical and experimental study. Construction and Building Materials, 167, 631-648.
[29]        ASTM C39. (2012). Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens. ASTM International, West Conshohocken.
[30]        ASTM C1609. (2012). Standard Test Method for Flexural Performance of Fiber-Reinforced Concrete (Using Beam With Third-Point Loading). ASTM International, West Conshohocken.
[31]        ASTM C496. (2017). Standard Test Method for Splitting Tensile Strength of Cylindrical Concrete Specimens. ASTM International, West Conshohocken.
[32]        Bani, Ardalan, Reza, Joshaghani, Alireza, Hooton, Douglas. (2017). Workability retention and compressive strength of self-compacting concrete incorporating pumice powder and silica fume. Construction and Building Materials, 134, 116-122.
[33]        Bisht, Kunal, Ramana, P.V. (2018). Sustainable production of concrete containing discarded beverage glass as fine aggregate. Construction and Building Materials, 177, 116-124.
[34]        Ghannam, Shehdeh, Najm , Husam, Vasconez, Rosa. (2016). Experimental study of concrete made with granite and iron powders as partial replacement of sand. Sustainable Materials and Technologies, 9, 1-9.