بهره‌جویی از راه‌کارهای فرا ابتکاری بر پایه‌ی الگوریتم ژنتیک برای بهینه‌سازی تعداد تقسیم‌ها، زاویه‌ و ساختار سامانه‌های شبکه‌ای قطری

نوع مقاله : علمی - پژوهشی

نویسندگان

1 استادیار، گروه مهندسی عمران، واحد ارومیه، دانشگاه آزاد اسلامی، ارومیه، ایران

2 دانشجوی دکتری گروه مهندسی عمران ، واحد ارومیه ، دانشگاه آزاداسلامی ، ارومیه ، ایران

چکیده

سامانه‌های شبکه‌ای قطری سیستم‌های سازه‌ای گسترش‌پیدا کرده از سازه‌های لوله‌ای و قابی هستند و می‌توانند با کاهش چشم‌گیر لنگی برش، وزن سازه را به‌شدت کاهش دهند و به بهبود رفتار ساختمان‌های بلندمرتبه کمک کنند. در این مقاله تعداد تقسیم‌ها، زاویه‌ و ساختار بهینه‌ی سامانه‌های شبکه‌ای قطری تک و دولایه در ساختمان‌های بلند تعیین می‌شوند. برای این منظور از یک برنامه‌ی رایانه‌ای و راه‌کارهای فرا ابتکاری بر پایه‌ی الگوریتم ژنتیک و کارامبا به‌عنوان موتور تحلیل سازه بهره‌جویی شده است. در این تحلیل‌ها، رابطه‌ی بین عامل‌های ورودی شامل فاصله‌ی بین دو لایه‌، زاویه و تعداد المان‌ها و تعداد تقسیم‌های قائم و افقی با عامل‌های خروجی به‌دست آمده از تحلیل سازه به کمک موتور کارامبا، شامل بیشینه تغییرشکل‌ها، وزن و اثر پی دلتا به‌دست آمدند. بر اساس نتیجه‌های به‌دست آمده از الگوریتم‌های ژنتیک و راه‌کارهای فراابتکاری، وزن‌های به‌دست آمده برای سامانه‌های شبکه‌ای قطری دارای یک لایه در مقایسه با سامانه‌های دولایه بیشتر است. علاوه بر آن، با توجه به وزن کم‌تر، ساختار هندسی ساده‌تر، سرعت اجرای بیشتر، عدم نیاز به نیروی فنی بسیار ماهر، پایین‌تر بودن مصرف انرژی، اشغال فضای معماری کم‌تر، ایجاد فضاهای بازتر و نوردهی مناسب‌تر در سامانه‌های تک لایه نسبت به دولایه، این سامانه‌ها برای کاربرد در ساختمان‌های بلندمرتبه پیشنهاد می‌شوند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Utilization of meta-innovative solutions based on genetic algorithm to optimize the number of divisions, angles and structure of diagonal grid systems

نویسندگان [English]

  • Ashkan KhodaBandehLou 1
  • Sina Zahiri Miandoab 2
1 Assistant Professor of the Faculty of Engineering, Civil Engineering Department, Urmia Branch, Islamic Azad University, Urmia, Iran
2 Ph.D.Student Of Civil Engineering-Structure, Faculty Of Engineering, Department of Civil Engineering, Urmia Branch, Islamic Azad University, Urmia, Iran
چکیده [English]

Diagonal lattice systems are extensively structured systems of tubular and frame structures and can drastically reduce the weight of the structure and significantly improve the behavior of high-rise buildings by significantly reducing shear lameness. In this paper, the number of partitions, the angle and the optimal structure of single and double layer diagonal grid systems in tall buildings are determined. For this purpose, a computer program and meta-innovative solutions based on genetic algorithm and Caramba have been used as the engine of structural analysis. In these analyzes, the relationship between input factors including distance between two layers, angle and number of elements and number of vertical and horizontal divisions with output factors obtained from structural analysis using Caramba engine, including maximum deformations, weight and Pi delta effect were obtained. Based on the results obtained from genetic algorithms and meta-heuristic solutions, the weights obtained for diagonal lattice systems are more than one layer compared to two-layer systems. In addition, due to lower weight, simpler geometric structure, higher execution speed, no need for highly skilled technical force, lower energy consumption, less architectural space, creating more open spaces and better exposure in single-layer systems than two-layer, These systems are recommended for use in high-rise buildings.

کلیدواژه‌ها [English]

  • high-rise buildings
  • Diagonal Structures
  • Optimal design
  • Genetic Algorithm
  • Galapagos
[1]  S. Qingxuan, Y. Ying, and B. Wang. "Experimental investigation on the seismic performance of concrete-filled steel tubular joints in diagrid structures." Structures. Vol. 31. Elsevier, 2021.
[2]  H. Jahangir, M. Bagheri, “Evaluation of Seismic Response of Concrete Structures Reinforced by Shape Memory Alloys", International Journal of Engineering, 2020; 33(3): 410-418. DOI: 10.5829/IJE.2020.33.03C.05.
[3]  A., Terán-Gilmore, S., Roeslin, E., Tapia-Hernández, & E., Cuadros-Hipólito, (2021). "Displacement-based design of tall earthquake-resistant diagrid systems." Journal of Building Engineering35, 102022.
[4]  Y. Kim, M. Kim, I. Jung, Y. Ju, S. K.-E. Structures, and  undefined 2011, “Experimental investigation of the cyclic behavior of nodes in diagrid structures,” Elsevier.
[5]  N. Panchal, V. P.-J. of R. in E. and, and  undefined 2014, “Diagrid structural system: Strategies to reduce lateral forces on high-rise buildings,” academia.edu.
[6]  R. Deshpande, S. Patil, S. R.-I. research journal of, and  undefined 2015, “Analysis and Comparison of Diagrid and Conventional Structural System,” irjet.net.
[7]  M. Shah, S. Mevada, V. P.-I. J. of, and  undefined 2016, “Comparative Study of Diagrid Structures with Conventional Frame Structures,” ingentaconnect.com.
[8]  D. Mascarenhas and D. Aithal, “Study on Diagrid Structures with Various Aspect Ratio under the Action of Wind,” 2017.
[9]  K. Kamath, S. Hirannaiah, J. N.-P. in Science, and  undefined 2016, “An analytical study on performance of a diagrid structure using nonlinear static pushover analysis,” Elsevier.
[10]        M. Hegde, “Comparative Analysis of Conventional Steel Structure with Diagrid Structures of varied angles,” 2017.
[11]        E. Mele, M. Toreno, G. Brandonisio, and A. De Luca, “Diagrid structures for tall buildings: case studies and design considerations,” Struct. Des. Tall Spec. Build., vol. 23, no. 2, pp. 124–145, Feb. 2014.
[12]        G. Montuori, E. Mele, G. B.-T. S. D., and  undefined 2014, “Design criteria for diagrid tall buildings: Stiffness versus strength,” Wiley Online Libr.
[13]        G. Montuori, E. Mele, G. Brandonisio, A. D. L.-E. Structures, and  undefined 2014, “Secondary bracing systems for diagrid structures in tall buildings,” Elsevier.
[14]        B. Ekici, S. Kutucu, İ. S. (CEC), 2015 IEEE, and  undefined 2015, “Addressing the high-rise form finding problem by evolutionary computation,” ieeexplore.ieee.org.
[15]        I. Chatzikonstantinou, B. E. (CEC), 2015 IEEE, and  undefined 2015, “Multi-objective diagrid façade optimization using differential evolution,” ieeexplore.ieee.org.
[16]        P. Isaac, B. I.-I. R. J. of E. and, and  undefined 2017, “Comparative study of performance of high rise buildings with diagrid, hexagrid and octagrid systems under dynamic loading,” irjet.net.
[17]        P. MALI, D. W.-J. of, and  undefined 2018, “Comparative Study of Seismic Performance of Conventional Tube Structures and Diagrid Structure,” engineeringjournals.stmjournals.in.
[18]        D. Ballur and M. Manjunath, “Analytical study of diagrid structural system for rectangular and rectangular-chamfered multistory building,” 2017.
[19]        G. Dethe, M. Banagar, P. Kenjale, A. Das, M. D.- Analysis, and  undefined 2018, “Analysis of Diagrid Structure,” irjet.net.
[20]        L. Simone, C. Passoni, A. Marini, A. B. on S. R., and  undefined 2016, “Diagrid solutions for a sustainable seismic, energy, and architectural upgrade of European RC buildings,” aisberg.unibg.it.
[21]        O. Elhami, N. A.-M. C. E. journal, and  undefined 2018, “Estimation of Diagrid Structures Response Factor,” mcej.modares.ac.ir.
[22]        T. Li, T. Y. Yang, G. Tong, D. P. Tung, and Y. Li, “Performance-based seismic design and evaluation of fused steel diagrid frame,” Earthq. Spectra, p. 121017EQS257M, Jul. 2018.
[23]        C. Liu, Q. Li, Z. Lu, and H. Wu, “A review of the diagrid structural system for tall buildings,” Struct. Des. Tall Spec. Build., vol. 27, no. 4, p. e1445, Mar. 2018.
[24]        D. Varkey and M. George, “Dynamic Analysis Of Diagrid System With Complex Shape,” ijiset.com.
[25]        G. M. Montuori, E. Mele, G. Brandonisio, and A. De Luca, “Design criteria for diagrid tall buildings: Stiffness versus strength,” Struct. Des. Tall Spec. Build., vol. 23, no. 17, pp. 1294–1314, Dec. 2014.
[26]        J. Lee, J. Kong, J. K.-I. J. of S. Structures, and  undefined 2018, “Seismic Performance Evaluation of Steel Diagrid Buildings,” Springer.
[27]        D. Rutten, “Grasshopper: Generative Modeling for Rhino. Version 0.7. 0045,” Comput. Software]. Robert McNeel Assoc. Retrieved from www. Grasshopp. com, 2010.
[28]        A. Tedeschi and S. Andreani, AAD, Algorithms-aided Design: Parametric Strategies Using Grasshopper. Le Penseur Publisher, 2014.
[29]        C. Preisinger, “Karamba: parametric structural modeling,” Comput. Softw., 2011.
[30]        C. Preisinger, “Linking structure and parametric geometry,” Archit. Des., vol. 83, no. 2, pp. 110–113, 2013.
[31]        R. McNeel and others, “Rhinoceros,” NURBS modleing Wind. http//www. rhino3d. com/jewelry. htm, 2015.