بررسی آزمایشگاهی تأثیر بنتونیت در جایگزینی بخشی از سیمان بر خصوصیات مکانیکی بتن

نوع مقاله : علمی - پژوهشی

نویسندگان

1 مهندسی عمران، دانشکده مهندسی عمران، دانشگاه سمنان، سمنان، ایران

2 دانشیار، دانشکده مهندسی عمران، دانشگاه سمنان، سمنان، ایران

3 استاد، دانشکده مهندسی عمران، دانشگاه سمنان، سمنان، ایران

چکیده

رشد جمعیت و نیازهای متعدد جوامع، سبب افزایش روز افزون تقاضای سیمان شده است. ‌استفاده از مواد پوزولانی در ساخت بتن، راه‌حل مناسبی برای کاهش مصرف منابع انرژی، تولید گازهای گلخانه‌ای و مصرف سیمان می‌باشد. در این مطالعه تأثیر استفاده از بنتونیت سمنان به جای بخشی از سیمان بررسی شده است. در این مقاله هفت طرح اختلاط به همراه طرح اختلاط نمونه کنترل (CM) ساخته و مقایسه شده است. متغیر اصلی، تغییر نسبت بنتونیت به وزن سیمان می‌باشد که در بازه 5%، 10%، 15%، 20%، 25%، 30% و 35% در نظر گرفته شده است. آزمایش‌های مقاومت فشاری، مقاومت کششی شکافتگی نمونه‌ها و پیش‌بینی مدول گسیختگی برای بررسی خواص بتن، انجام شده است. با توجه به نتایج به دست آمده از آزمایش مقاومت فشاری، استفاده از بنتونیت به جای بخشی از سیمان به میزان 5 درصد، سبب افزایش 8 درصدی مقاومت فشاری 28 روزه نسبت به نمونه کنترل (Control Mix-CM) شده است. با جایگزین کردن 35% بنتونیت نسبت به وزن سیمان، مقاومت فشاری 28 روزه به میزان 21% کاهش یافته است. با توجه به نتایج مخلوط‌های حاوی بنتونیت در صورتی که مقدار بنتونیت بیش از 20% وزن سیمان باشد، مقاومت کششی 28 روزه نسبت به CM تا 45% کاهش می‌یابد. با توجه به نتایج،‌ در صورت جایگزینی 5% و 10% بنتونیت، مدول گسیختگی پیش‌بینی شده نسبت به نمونه CM، به ترتیب 7/3% و 1/3% افزایش می‌یابد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Investigation Experimental of the Effect of Bentonite as a Partial Replacement for Cement on Mechanical Properties of Concrete

نویسندگان [English]

  • Seyedeh Marzieh Qiyami Taklimi 1
  • Omid Rezayfar 2
  • majid Gholhaki 3
1 faculty of civil engineering,Semnan University,Semnan,Iran
2 Associate Proffessor, Faculty of Civil Engineering, Semnan University, Semnan, Iran
3 Professor, Faculty of Civil Engineering, Semnan University, Semnan, Iran
چکیده [English]

The continuous growth of the population will guarantee a massive demand for cement in the near future. Using pozzolanic materials in concrete manufacturing is intended as an optimal solution to lower the rate of greenhouse gas emission, and diminish energy resources and cement consumption. This research is aimed at evaluating Semnan Bentonite as partial replacement of cement. Seven bentonite mixes and control mix (CM) were examined. The main variable is the proportion of bentonite (5%, 10%, 15%, 20%, 25%, 30% and 35% by weight of cement) in replacement mode while the amount of cementitious material, water to cementitious material ratio, fine aggregate content were kept constant. To study properties of hardened concrete, compressive strength, splitting tensile strength tests and prediction of the modulus of rupture were performed. According to the results of compressive strength test, using 5% bentonite as partial replacement of cement, results in 8% increase in compressive strength 28 days as compared with the control mix. By replacing 35% of bentonite with the weight of cement, the compressive strength 28 days is reduced by 21%. According to the results in mixtures containing bentonite, if the amount of bentonite is more than 20% by weight of cement, the tensile strength 28 days is reduced by 45% compared to CM. According to the results, replacing 5% and 10% (by weight) of cement with bentonite, the predicted rupture modulus will increase by 3.7% and 3.1% compared to the CM, respectively

کلیدواژه‌ها [English]

  • Replacement of Cement
  • Bentonite
  • Compressive Strength
  • Tensile Strength
  • Rupture Modulus
[1]  M. Yılmaz and A. Bakış, “Sustainability in Construction Sector,” Procedia - Soc. Behav. Sci., vol. 195, pp. 2253–2262, 2015, doi: 10.1016/j.sbspro.2015.06.312.
[2]  N. D. Oikonomou, “Recycled concrete aggregates,” Cem. Concr. Compos., vol. 27, no. 2, pp. 315–318, 2005, doi: https://doi.org/10.1016/j.cemconcomp.2004.02.020.
[3]  S. Marinković, J. Dragaš, I. Ignjatović, and N. Tošić, “Environmental assessment of green concretes for structural use,” J. Clean. Prod., vol. 154, pp. 633–649, 2017, doi: https://doi.org/10.1016/j.jclepro.2017.04.015.
[4]  V. Glinskiy, L. Serga, and M. Khvan, “Assessment of Environmental Parameters Impact on the Level of Sustainable Development of Territories,” Procedia CIRP, vol. 40, pp. 625–630, 2016, doi: https://doi.org/10.1016/j.procir.2016.01.145.
[5]  C.-H. Huang, S.-K. Lin, C.-S. Chang, and H.-J. Chen, “Mix proportions and mechanical properties of concrete containing very high-volume of Class F fly ash,” Constr. Build. Mater., vol. 46, pp. 71–78, 2013, doi: https://doi.org/10.1016/j.conbuildmat.2013.04.016.
[6]  D. Nagrockiene, I. Pundienė, and A. Kicaite, “The effect of cement type and plasticizer addition on concrete properties,” Constr. Build. Mater., vol. 45, pp. 324–331, 2013, doi: https://doi.org/10.1016/j.conbuildmat.2013.03.076.
[7]  D. Nagrockiene and G. Girskas, “Research into the properties of concrete modified with natural zeolite addition,” Constr. Build. Mater., vol. 113, pp. 964–969, 2016, doi: https://doi.org/10.1016/j.conbuildmat.2016.03.133.
[8]  F. Cassagnabère, P. Diederich, M. Mouret, G. Escadeillas, and M. Lachemi, “Impact of metakaolin characteristics on the rheological properties of mortar in the fresh state,” Cem. Concr. Compos., vol. 37, pp. 95–107, 2013, doi: https://doi.org/10.1016/j.cemconcomp.2012.12.001.
[9]  G. V. K. Reddy, V. R. Rao, and M. A. K. Reddy, “Experimental investigation of strength parameters of cement and concrete by partial replacement of cement with Indian calcium bentonite,” Int. J. Civ. Eng. Technol., vol. 8, no. 1, pp. 512–518, 2017.
[10]  K. C. Onyelowe et al., “Strength of pozzolan soil blend in chemically improved lateritic soil for pavement base material purpose,” Int. J. Low-Carbon Technol., vol. 14, no. 3, pp. 410–416, 2019, doi: https://doi.org/10.1093/ijlct/ctz035.
[11]  A. Trümer, H.-M. Ludwig, M. Schellhorn, and R. Diedel, “Effect of a calcined Westerwald bentonite as supplementary cementitious material on the long-term performance of concrete,” Appl. Clay Sci., vol. 168, pp. 36–42, 2019, doi: https://doi.org/10.1016/j.clay.2018.10.015.
[12]  L. Zhang, P. De Schryver, B. De Gusseme, W. De Muynck, N. Boon, and W. Verstraete, “Chemical and biological technologies for hydrogen sulfide emission control in sewer systems: a review,” Water Res., vol. 42, no. 1–2, pp. 1–12, 2008, doi: https://doi.org/10.1016/j.watres.2007.07.013.
[13]  T. Noeiaghaei, A. Mukherjee, N. Dhami, and S.-R. Chae, “Biogenic deterioration of concrete and its mitigation technologies,” Constr. Build. Mater., vol. 149, pp. 575–586, 2017, doi: https://doi.org/10.1016/j.conbuildmat.2017.05.144.
[14]  M. K. Sharbatdar, M. Abbasi, and P. Fakharian, “Improving the Properties of Self-compacted Concrete with Using Combined Silica Fume and Metakaolin,” Period. Polytech. Civ. Eng., 2020, doi: 10.3311/PPci.11463.
[15]  S.-H. Chen, H.-Y. Wang, and J.-W. Jhou, “Investigating the properties of lightweight concrete containing high contents of recycled green building materials,” Constr. Build. Mater., vol. 48, pp. 98–103, 2013, doi: https://doi.org/10.1016/j.conbuildmat.2013.06.040.
[16]  D. Tavakoli, P. Fakharian, and J. de Brito, “Mechanical properties of roller-compacted concrete pavement containing recycled brick aggregates and silica fume,” Road Mater. Pavement Des., pp. 1–22, 2021.
[17]  S. M. Qiyami Taklimy, Rezaifar.Omid, and M. Gholhaki, “Effect of Substitution of Natural Calcareous and Clay Materials with Cement in Low-Carbon Concretes,” Transp. Infrastruct. Eng. (JTIE)-(In Persian), vol. 5, no. 4, pp. 40–49, 2019, doi: 10.22075/jtie.2019.19135.1431.
[18]  S. A. Memon, R. Arsalan, S. Khan, and T. Y. Lo, “Utilization of Pakistani bentonite as partial replacement of cement in concrete,” Constr. Build. Mater., vol. 30, pp. 237–242, 2012, doi: https://doi.org/10.1016/j.conbuildmat.2011.11.021.
[19]  A. A. Ramezanianpour and A. R. Pourkhorshidi, “Durability of concretes containing supplementary cementing materials under hot and aggressive environment,” Spec. Publ., vol. 221, pp. 633–646, 2004.
[20]  A. Standard, “ASTM C618-08a: Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete.” American Society for Testing and Materials, 2010.
[21]  S. M. Qiyami Taklymi, O. Rezaifar, and M. Gholhaki, “Application of hot and dry climate pozzolans in structural materials and load bearing walls (In Persian-Book),” in Application of hot and dry climate pozzolans in structural materials and load bearing walls, Tehran, 2020, p. 147.
[22]  R. Moghanloo and H. Aghajani, “Study of the effect of bentonite and cement on the strength and permeability of plastic concrete in laboratory conditions (In Persian),” 2013.
[23]  A. T. Amlashi, P. Alidoust, A. R. Ghanizadeh, S. Khabiri, M. Pazhouhi, and M. S. Monabati, “Application of computational intelligence and statistical approaches for auto-estimating the compressive strength of plastic concrete,” Eur. J. Environ. Civ. Eng., pp. 1–32, 2020.
[24]  A. T. Amlashi, S. M. Abdollahi, S. Goodarzi, and A. R. Ghanizadeh, “Soft computing based formulations for slump, compressive strength, and elastic modulus of bentonite plastic concrete,” J. Clean. Prod., vol. 230, pp. 1197–1216, 2019.
[25]  H. Abbaslou, A. R. Ghanizadeh, and A. T. Amlashi, “The compatibility of bentonite/sepiolite plastic concrete cut-off wall material,” Constr. Build. Mater., vol. 124, pp. 1165–1173, 2016.
[26]  A. Khaloo, “Parameters Influencing Behavior of plastic Concrete (In Persian).” Sharif University of Technology, Tehran, 1996.
[27]  S. M. Qiyami Taklymi, O. Rezaifar, and M. Gholhaki, “Utilization of bentonite as partial replacement of cement in low-strength concrete (In Persian),” J. Concr. Struct. Mater., vol. 5, no. 2, pp. 25–40, 2020, doi: 10.30478/jcsm.2020.228745.1156.
[28]  H. Abbaslou, A. Tavana Amlashi, A. Ghanizadeh, and S. Azemi, “Effects of mixing design and curing time on compressive and tensile strength of bentonite plastic concrete (In Persian),” Concr. Res., vol. 10, no. 2, pp. 109–124, 2017, doi: doi:10.22124/JCR.2017.2418.
[29]  H. H. Lee, C.-W. Wang, and P.-Y. Chung, “Experimental Study on the Strength and Durability for Slag Cement Mortar with Bentonite,” Appl. Sci., vol. 11, no. 3, p. 1176, 2021, doi: https://doi.org/10.3390/app11031176.
[30]  B. Masood, A. Elahi, S. Barbhuiya, and B. Ali, “Mechanical and durability performance of recycled aggregate concrete incorporating low calcium bentonite,” Constr. Build. Mater., vol. 237, p. 117760, 2020, doi: https://doi.org/10.1016/j.conbuildmat.2019.117760.
[31]  S. M. Qiyami Taklymi, O. Rezaifar, and M. Gholhaki, “Investigating the properties of bentonite and kaolin modified concrete as a partial substitute to cement,” SN Appl. Sci., vol. 2, no. 12, pp. 1–14, 2020, doi: https://doi.org/10.1007/s42452-020-03380-z.
[32]  C. ASTM, “ASTM-C136: Standard test method for sieve analysis of fine and coarse aggregates.” 2006.
[33]  C. ASTM, “ASTM-C128: Standard test method for specific gravity and absorption of,” 2001.
[34]  A. Standard, “ASTM-C127-07: Standard Test Method for Density, Relative Density (Specific Gravity), and Absorption of Coarse Aggregate,” Stand. test method Specif. gravity Absorpt., 2007.
[35]  C. ASTM, “ASTM-C143: Standard test method for slump of hydraulic cement concrete, ASTM International, West Conshohocken, PA, USA,” vol. 4. 1996.
[36]  BSI, “Standard: Testing hardened concrete. Compressive strength of test specimens/ BS EN 12390-3: 2009.” BRITISH STANDARD, 2011.
[37]  S. Ahmad, S. A. Barbhuiya, A. Elahi, and J. Iqbal, “Effect of Pakistani bentonite on properties of mortar and concrete,” Clay Miner., vol. 46, no. 1, pp. 85–92, 2011, doi: https://doi.org/10.1180/claymin.2011.046.1.85.
[38]  J. Mirza, M. Riaz, A. Naseer, F. Rehman, A. N. Khan, and Q. Ali, “Pakistani bentonite in mortars and concrete as low cost construction material,” Appl. Clay Sci., vol. 45, no. 4, pp. 220–226, 2009, doi: https://doi.org/10.1016/j.clay.2009.06.011.
[39]  T. Akram, S. A. Memon, and K. Iqbal, “Utilization of bagasse ash as partial replacement of cement,” in International Conference on Advances in Cement Based Materials and Applications in Civil Infrastructure ACBM-ACI, Lahore, Pakistan, 2007, pp. 235–245.
[40]  P. K. Mehta and P. J. M. Monteiro, Concrete microstructure, properties and materials. 2017.
[41]  P. Monteiro, Concrete: microstructure, properties, and materials. McGraw-Hill Publishing, 2006.
[42]  A. Nevill, G. Broxe, A. A. RamezanianPour, and N. Araby, Concrete Technology (Book). Tehran: Negarande Danesh, 2016.
[43]  J. A. Bogas, J. de Brito, and J. M. Figueiredo, “Mechanical characterization of concrete produced with recycled lightweight expanded clay aggregate concrete,” J. Clean. Prod., vol. 89, pp. 187–195, 2015, doi: https://doi.org/10.1016/j.jclepro.2014.11.015.
[44]  A. M. Neville, Properties of concrete, vol. 4. Longman London, 1995.
[45]  H. Erfany, Crystallography (in Persian). Tehran: Tehran University.
[46]  R. Falihy, “Causes of using sodium bicarbonate in cement slurry for injection in rocks (In Persian).”
[47]  A. C. I. Committee and I. O. for Standardization, “Building code requirements for structural concrete (ACI 318-08) and commentary,” 2008.
[48]  S.-C. Pan, D.-H. Tseng, C.-C. Lee, and C. Lee, “Influence of the fineness of sewage sludge ash on the mortar properties,” Cem. Concr. Res., vol. 33, no. 11, pp. 1749–1754, 2003, doi: https://doi.org/10.1016/S0008-8846(03)00165-0.
[49]  B. B. Sabir, S. Wild, and J. Bai, “Metakaolin and calcined clays as pozzolans for concrete: a review,” Cem. Concr. Compos., vol. 23, no. 6, pp. 441–454, 2001, doi: https://doi.org/10.1016/S0958-9465(00)00092-5.
[50]  M. J. Shannag, “High strength concrete containing natural pozzolan and silica fume,” Cem. Concr. Compos., vol. 22, no. 6, pp. 399–406, 2000, doi: https://doi.org/10.1016/S0958-9465(00)00037-8.
[51]  A. Standard, “ASTM-C311-07: Standard Test Methods for Sampling and Testing Fly Ash or Natural Pozzolans for Use in Portland-Cement Concrete,” Annu. B. ASTM Stand., 2007.