بررسی تحلیلی و آزمایشگاهی تیرهای عمیق بتن مسلح دارای گشودگیهای دایروی تقویت شده با ورق های CFRP

نوع مقاله : علمی - پژوهشی

نویسندگان

1 دانشیار، دانشگاه تربیت مدرس، تهران، ایران

2 دانشجوی دکتری، دانشگاه تربیت مدرس، تهران، ایران

چکیده

ایجاد گشودگی در تیرهای عمیق بتنی به منظور عبور تاسیسات مکانیکی و الکترونیکی و دیگر دلایل معماری باعث کاهش ظرفیت باربری این اعضا می شود؛ از جمله روش های مورد استفاده برای جبران این نقص، تقویت این اعضا با ورق های CFRP (Carbon Fiber Reinforced Polymer) است که کارایی بالای آن ها در افزایش مقاومت و شکل پذیری اجزای بتنی در بسیاری از تحقیقات گذشته به اثبات رسیده است. در این پژوهش با انجام آزمایش بارگذاری تک نقطه ای مونوتونیک بر روی 5 عدد تیر عمیق بتن مسلح با ابعاد mm100x500x1200 و دارای یک زوج گشودگی دایروی به قطر 200 میلی متر، به بررسی روش و جهت نصب ورق های تقویتی CFRP و اثر آن ها بر روی رفتار این تیرها پرداخته شده است. روش های مورد بررسی در این تحقیق شامل آماده سازی سطحی EBR (Externally Bonded Reinforcement) و شیارزنی از نوع EBROG (Externally Bonded Reinforcement On Grooves) بوده که به دو صورت دورپیج و مورب مورد استفاده قرار گرفتند. نتایج حاصل از این تحقیق نشان دهنده ی تاثیر گشودگی ها در کاهش حدود 59 درصدی ظرفیت باربری و 66 درصدی جذب انرژی است؛ همچنین در حالی که روش دورپیچی باعث افزایش 27 درصدی ظرفیت باربری نسبت به نمونه بدون تقویت شده است، آرایش مورب این مقدار را تا حدود 43 درصد افزایش داده که از مود گسیختگی نمونه ها می توان به وضوح اثر شیارها در افزایش کارایی کامپوزیت را مشاهده نمود. علاوه بر بررسی آزمایشگاهی، در این تحقیق مدلی تحلیلی بر مبنای مودهای محتلف شکست تیر عمیق ارائه شده است که با استفاده از آن و با دقت مناسبی می توان ظرفیت نهایی تیرهای عمیق را پیش بینی کرد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Shear Strengthening of RC Deep Beams with Circular Openings by Means FRP Composites

نویسندگان [English]

  • Abolfazl Arabzadeh 1
  • Hamid Karimizadeh 2
1 Department of Civil Engineering, Tarbiat Modares University, Tehran, Iran
2 Department of Civil Engineering, Tarbiat Modares University, Tehran, Iran
چکیده [English]

The high depth created favorable space for placing the openings which are to provide some capabilities such as mechanical and electrical installations, but these openings reduced load bearing capacity of the beams. One solution to the mentioned shortcoming is to use FRP-Composite sheets; the effect of FRP-Composites in improving load bearing and ductility of concrete members such as columns and beams is approved in previous investigations. This study utilizes the CFRP sheets to compensate for weakness arisen from the created openings. To this end, 5 deep beams with 10x50x120 cm dimensions, each having two circular openings with 20 cm diameter placed in symmetrical order, are constructed and undergone a three-point monotonic bending. The Externally Bounded Reinforcement (EBR) and Externally Bounded Reinforcement on Grooves (EBROG) methods have been utilized to install the FRP sheets in two configurations being wrapped around and inclined. The results have shown the superiority of EBROG method as well as the efficiency of the inclined orientation of strengthening sheets in increasing the load bearing-capacity. Also, Shear failure was the type of failure in beams and it has been observed that generally, diagonal cracks, which lead to the strut formation, tend to be formed in the beams. The cracks started from the support plates and propagated towards the loading plate. In addition to the extended cracking, the strengthened specimens have experienced debonding and failure in their composite strips. The strengthening strips have experienced failure in the wrapped specimen as a result of providing suitable confinement and leaving no chance for strip debonding as well as in the specimen with inclined strengthening strips as a result of the high efficiency of tensile stresses on the strips. Compared to the related non- strengthened specimens, the load bearing capacity increase arising from inclined orientation is 40% to 43%. In addition, this amount compared to the wrapped around specimen is about 16%.

کلیدواژه‌ها [English]

  • Reinforced concrete deep beams
  • Opening
  • CFRP composites
  • EBR method
  • EBROG method
[1] Design and Construction of Reinforced Concrete Buildings. (1392). Code 9, Office of the Building National Regulations, (In Persian (
[2] Iran Concrete Regulation. (1383). Management and Planning Organization, (In Persian (
[3] A. Committee, 318, Building Code Requirements for Structural Concrete (ACI 318–14) and Commentary (ACI 318R–14) (2014), American Concrete Institute, Farmington Hills, MI, 519.
[4] Arabzadeh. A, Rahaie. A, Aghayari. A. (2009). A simple strut-and-tie model for prediction of ultimate shear strength of rc deep beams, International Journal of Civil Engineering, 7(3), 141-153.
[5] Chen. H, Yi. W.-J, Hwang. H.-J. (2018). Cracking strut-and-tie model for shear strength evaluation of reinforced concrete deep beams, Engineering Structures, 163, 396-408.
[6] Deng. M, Ma. F, Ye. W, Liang. X. (2018). Investigation of the shear strength of HDC deep beams based on a modified direct strut-and-tie model, Construction and Building Materials, 172, 340-348.
[7] Ismail. K.S, Guadagnini. M, Pilakoutas. K. (2017). Strut-and-Tie Modeling of Reinforced Concrete Deep Beams, Journal of Structural Engineering, 144(2), 04017216.
[8] Campione. G, Minafò. G. (2012). Behaviour of concrete deep beams with openings and low shear span-to-depth ratio, Engineering Structures, 41, 294-306.
[9] Chegeni. I.B, Dalvand. A. (2016). Finite Element Study of Reinforced Concrete Deep Beams with Rectangular Web Openings, Journal of Engineering of and Applied Science, 11(2), 3167-3176.
[10] Hu. O, Tan. K. (2007), Large reinforced-concrete deep beams with web openings: test and strut-and-tie results, Magazine of Concrete Research, 59(6), 423-434.
[11] Senthil. K, Gupta. A, Singh. S. (2018). Computation of stress-deformation of deep beam with openings using finite element method, Advances in Concrete Construction, 6(3), 245-268.
[12] Tseng. C-C, Hwang. S.-J, Lu. W.-Y. (2017). Shear Strength Prediction of Reinforced Concrete Deep Beams with Web Openings, ACI Structural Journal, 114(6), 1569-1579.
[13] El-Maaddawy. T, Sherif. S. (2009) FRP composites for shear strengthening of reinforced concrete deep beams with openings, Composite Structures, 89(1), 60-69.
[14] El-Maaddawy. T, El-Ariss. B. (2012). Behavior of concrete beams with short shear span and web opening strengthened in shear with CFRP composites, Journal of Composites for Construction, 16(1), 47-59.
[15] Islam. M, Mansur. M, Maalej. M. (2005). Shear strengthening of RC deep beams using externally bonded FRP systems, Cement and Concrete Composites, 27(3), 413-420.
[16] Kumar.H. Eexperimental and numerical studies on behaviour of FRP strengthened deep beams with openings, MSc Thesis, National Institute of Technology, Rourkela, (2012).
[17] Lu. W-Y, Yu. H-W, Chen. C-L, Liu. S-L, Chen. T-C. (2015). High-strength concrete deep beams with web openings strengthened by carbon fiber reinforced plastics, Computers and Concrete.
[18] Hanoon. A.N, Jaafar. M, Hejazi. F, Aziz F.N.A. (2017). Strut-and-tie model for externally bonded CFRP-strengthened reinforced concrete deep beams based on particle swarm optimization algorithm: CFRP debonding and rupture, Construction and Building Materials, 147, 428-447.
[19] Hawileh. R, El-Maaddawy T.,Naser. M. (2012). Nonlinear finite element modeling of concrete deep beams with openings strengthened with externally-bonded composites, Materials & Design, 42, 378-387.
[20] Ha. S.T. (2000). Design of concrete deep beams with openings and carbon fiber laminate repair, Master's Theses and Graduate Research, San Jose State University.
[21] Kim. M, Kim. H, Park.H, Ahn. N, Lee.N. (2015). Evaluation of shear behavior of deep beams with shear reinforced with GFRP plate, Scientia Iranica. Transaction B, Mechanical Engineering, 22(6), 2142.
[22] Dias. S, Barros. J, Janwaen. W. (2018). Behavior of Rc Beams Flexurally Strengthened with Nsm Cfrp Laminates, Composite Structures, 201, 363-376.
[23] Hajihashemi. A, Mostofinejad. M,Azhari. M. (2011). Investigation of RC beams strengthened with prestressed NSM CFRP laminates, Journal of Composites for Construction, 15(6), 887-895.
[24] Sas. G, Dăescu. C, Popescu. C, Nagy-György. T. (2014). Numerical optimization of strengthening disturbed regions of dapped-end beams using NSM and EBR CFRP, Composites Part B: Engineering, 67, 381-390.
[25] Sharaky. I, Baena. M, Barris. C, Sallam. M, Torres. L. (2018).  Effect of axial stiffness of NSM FRP reinforcement and concrete cover confinement on flexural behaviour of strengthened RC beams: Experimental and numerical study, Engineering Structures, 173, 987-1001.
[26] Mostofinejad. D, Kashani. A.T. (2013). Experimental study on effect of EBR and EBROG methods on debonding of FRP sheets used for shear strengthening of RC beams, Composites Part B: Engineering, 45(1), 1704-1713.
[27] Mostofinejad. D, Mahmoudabadi. E. (2010). Grooving as alternative method of surface preparation to postpone debonding of FRP laminates in concrete beams, Journal of Composites for Construction, 14(6), 804-811.
[28] Mostofinejad. D, Moghaddas. A. (2014).  Bond efficiency of EBR and EBROG methods in different flexural failure mechanisms of FRP strengthened RC beams, Construction and Building Materials, 54, 605-614.
[29] Mostofinejad. D, Shameli. S.M. (2013). externally bonded reinforcement in grooves (EBRIG) technique to postpone debonding of FRP sheets in strengthened concrete beams, Construction and Building Materials, 38, 751-758.
[30] Hussain. Q, Pimanmas. A, (2015) Shear strengthening of RC deep beams with openings using Sprayed Glass Fiber Reinforced Polymer Composites (SGFRP): Part 1. Experimental study, KSCE Journal of Civil Engineering, 19(7), 2121-2133.
[31] Raisszadeh. A.H, Khaloo. A.R.. (2010). Finite Element Investigation of Retrofit of RC Deep Beams Using FRP Wraps, in:  Proceedings of the 3rd International Conference on Seismic Retrofitting, Tabriz, Iran.
[32] Arabzadeh. A , Amani Dashlejeh, A, Mahmoudzadeh Kani. I. (2015). Experimental Study of prestressed RC Deep Beams retrofitted by CFRP, Modares Civil Engineering journal, 15, 117-126.
[33] Mostofinejad. D, Hajrasouliha. M, (2011) Experimental study on grooving detail for elimination of debonding of FRP sheets from concrete surface, in:  Advances in FRP Composites in Civil Engineering, Springer, pp. 545-547.
[34] Standard.A, 211.1. (1996). Standard practice for selecting proportions for normal, heavyweight, and mass concrete, ACI Manual of Concrete Practice, Part: 1, 211.211-211.
[35] Isa. M.A, Alrousan.R.Z, .(2009). Experimental and parametric study of circular short columns confined with CFRP composites, Journal of Composites for Construction, 13(2), 135-147.
[36] Piekarczyk. J, Piekarczyk. W, Blazewicz. S. (2011). Compression strength of concrete cylinders reinforced with carbon fiber laminate, Construction and Building Materials, 25(5), 2365-2369.
[37] Rousakis. T.C, Karabinis. A.I, Kiousis. P.D. (2007). FRP-confined concrete members: Axial compression experiments and plasticity modelling, Engineering Structures, 29(7),1343-1353.
[38] Lei. X, Pham, T.M, Hadi. M.N. (2012). Comparative behaviour of FRP confined square concrete columns under eccentric loading, 6th International Conference on Bridge Maintenance, Safety and Management, IABMAS, The Netherlands: CRC Press/Balkema, 1207-1214.
[39] Wang. L.M, Wu. Y.F, (2008). Effect of corner radius on the performance of CFRP-confined square concrete columns: Test, Engineering structures, 30(2), 493-505.
[40] De Paiva. H, Siess. C.P. (1965). Strength and behavior of deep beams in shear, Journal of the Structural Division, 91(5) 19-41.
[41] Kong. F, Garcia. R, Paine, J, Wong, H, Tang, C, Chemrouk, M, (1986), Strength and stability of slender concrete deep beams, The Structural Engineer B, 64, 49-56.
[42] Kong. F.K. (2006). Reinforced concrete deep beams, CRC Press.
[43] Ramakrishnan. V, Ananthanarayana. Y.(1968). Ultimate strength of deep beams in shear, in:  Journal Proceedings,, pp. 87-98.
[44] Tan. K, Tang. C, Tong. K, .(2003). A direct method for deep beams with web reinforcement, Magazine of concrete research, 55(1), 53-63.
[45] Moghaddas. A, Mostofinejad. D, Ilia. E. (2019). Empirical FRP-concrete effective bond length model for externally bonded reinforcement on the grooves, Composites Part B: Engineering, 172, 323-338.