انتخاب بهینه شکل و مصالح پانل‌های‏‏ ساندویچی با هسته موجدار در برابر بارهای انفجاری

نوع مقاله: علمی - پژوهشی

نویسندگان

1 دانشجوی دکتری مهندسی سازه، دانشکده مهندسی عمران، دانشگاه سمنان، سمنان، ایران

2 استاد، دانشکده مهندسی، دانشگاه فردوسی مشهد، مشهد، ایران

چکیده

همواره بررسی رفتار سازه‏‏ های مختلف در برابر اثرات بارهای ناشی از انفجار یکی از عوامل مهم مورد بررسی می‌باشد. پانل‏ های ساندویچی دارای کاربردهای وسیعی در انواع حوزه‏ های مهندسی و ساخت برخی سازه‏‏ های صنعتی و نظامی هستند. این پانل‏‏ ها از دو ورق و یک سازه میانی به عنوان هسته پانل تشکیل شده‏‏ اند. هسته پانل در کاهش تغییرشکل و افزایش توانایی استهلاک انرژی سازه نقش به سزایی دارد. در این پژوهش، به بررسی تاثیر شکل هسته موجدار پانل و نوع مصالح پانل پرداخته شده است. از این رو، رفتار پانل‏‏ های ساندویچی از جنس آلومینیم و فولاد در برابر بارهای انفجاری مورد بررسی قرار گرفته است. در فرآیند تحلیل، چهار نوع ورق موجدار مستطیلی، ذوزنقه‌ای، مثلثی و بیضوی برای هسته پانل‏‏ ها در نظر گرفته شده است. بیشترین تغییرشکل در پانل ‏‏ها، متعلق به هسته‏ مثلثی است. پانل‏‏ با هسته ذوزنقه‌ای کمترین تغییرشکل‏‏ را دارد. پانل‏‏ هایی که تماما از جنس آلومینیم می‏ باشند نسبت به نمونه‏‏ های دیگر، انرژی بیشتری مستهلک کرده‏‏ اند. پانل‏‏ هایی که فقط ورق‏‏ های آن‌ها از جنس آلومینیم است و پانل‏‏ هایی که فقط هسته آن‌ها از جنس آلومینیم می‏‏ باشد، به ترتیب در مرتبه بعدی استهلاک انرژی قرار می‏‏ گیرند. در بررسی تاثیر توام نوع مصالح و شکل هسته پانل، پانل با ورق‌های رویی و پشتی فولادی و هسته آلومینیمی با شکل مثلثی مطلوب‌ترین عملکرد را دارد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Optimum Selection of Corrugated Sandwich Panels Shape and Materials Subjected to Blast Loading

نویسندگان [English]

  • Soheil Sabzevari 1
  • Farzad Shahabian 2
1 PhD Student, Faculty of Civil Engineering, Semnan University, Semnan, Iran
2 Professor, Department of Civil Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
چکیده [English]

The behavior of different structures subjected to blast loads is always an important factor to study. Sandwich panels have a wide range of applications in different fields of engineering and the construction of some industrial and military structures. These panels are made of two sheets and an intermediate core. The core has a significant role in reducing the deflection and enhancing energy absorb of structure. In this article, the effect of the shape of the corrugated panel and the type of panel materials is investigated. Hence, the reaction of aluminum and steel sandwich panels subjected to blast loads has been investigated. In the process of analysis, four kinds of profiles, which are: rectangular, trapezoidal, triangular and elliptical, are considered as panel cores. the most deflection was for rectangular profiles and the least deflection was for triangular ones. Those panels which are completely made of aluminum or the panels with steel cores can sustain more strain energy by their back sheets. all the panels that are completely made of aluminum have more damped energy than others. Those panels which have only aluminum sheets or aluminum cores are placed next to whole aluminum panels in order to damped energy level. In the study of the joint effect of the type of materials and the shape of the core panel, the panel with the upper and back of the steel and aluminum core with the triangular shape has the most desirable.

کلیدواژه‌ها [English]

  • Blast loading
  • Sandwich Panel
  • Corrugated Core
  • Damped Energy
  • Maximum Deflection

[1] L. J. Gibson and M. F. Ashby, (1999). Cellular solids: structure and properties. Cambridge university press.

[2] G. Lu and T. X. Yu, (2003). Energy absorption of structures and materials. Elsevier.

[3] N. A. Fleck and V. S. Deshpande, (2004). “The resistance of clamped sandwich beams to shock loading,” J. Appl. Mech., vol. 71, no. 3, pp. 386–401.

[4] X. Qiu, V. S. Deshpande, and N. A. Fleck, (2004). “Dynamic response of a clamped circular sandwich plate subject to shock loading,” Trans. Soc. Mech. Eng. J. Appl. Mech., vol. 71, no. 5, pp. 637–645.

[5] J. W. Hutchinson and Z. Xue, (2005). “Metal sandwich plates optimized for pressure impulses,” Int. J. Mech. Sci., vol. 47, no. 4, pp. 545–569.

[6] Z. Xue and J. W. Hutchinson, (2003). “Preliminary assessment of sandwich plates subject to blast loads,” Int. J. Mech. Sci., vol. 45, no. 4, pp. 687–705.

[7] Z. Xue and J. W. Hutchinson, (2004). “A comparative study of impulse-resistant metal sandwich plates,” Int. J. Impact Eng., vol. 30, no. 10, pp. 1283–1305.

[8] G. N. Nurick, G. S. Langdon, Y. Chi, and N. Jacob, (2009). “Behaviour of sandwich panels subjected to intense air blast–Part 1: Experiments,” Compos. Struct., vol. 91, no. 4, pp. 433–441.

[9] H. Ebrahimi and A. Vaziri, (2013). “Metallic sandwich panels subjected to multiple intense shocks,” Int. J. Solids Struct., vol. 50, no. 7, pp. 1164–1176.

[10] Li, X., Zhang, P., Wang, Z., Wu, G. and Zhao, L., (2014). “Dynamic Behavior of Aluminum Honeycomb Sandwich Panels under Air Blast: Experiment and Numerical Analysis”, Composite Structures, Vol. 108, pp. 1001–1008.

[11] Yazici, M., Wright, J., Bertin, D. and Shukla, A., (2014). “Experimental and Numerical Study of Foam Filled Corrugated Core Steel Sandwich Structures Subjected to Blast Loading”, Composite Structures, Vol. 110, pp. 98–109.

[12] Shen, J., Lu, G., Wang, Z. and Zhao, L., (2010). “Experiments on Curved Sandwich Panels under Blast Loading”, International Journal of Impact Engineering, Vol. 37, No. 9, pp. 960–970.

[13] Jing, L., Wang, Z. and Zhao, L., (2013). “Dynamic Response of Cylindrical Sandwich Shells with Metallic Foam Cores under Blast Loading: Numerical Simulations”, Composite Structures, Vol. 99, pp. 213–223.

[14] A. Version, “6.7, Abaqus/CAE and Abaqus/Explicit.(2009).” Simulia World Headquarters, Provid.

[15] X. Li, Z. Wang, F. Zhu, G. Wu, and L. Zhao, (2014). “Response of aluminium corrugated sandwich panels under air blast loadings: Experiment and numerical simulation,” Int. J. Impact Eng., vol. 65, pp. 79–88.

[16] R. G. S. Sewel, T. R. Zulkoski, and G. F. Kinney, (1979). “Blast parameter characterization,” Nav. Weapons Cent. Tech. Rep. TP, vol. 5920.

[17] R. T. Allen, (1967). Equation of state of rocks and minerals. General Dynamics, General Atomic Division.