برآورد ضرایب عملکرد لرزه‌ای قاب خمشی فولادی به کمک تحلیل بار افزون مرسوم و پیشرفته با نگاه به اثر مودهای بالاتر و زلزله نزدیک گسل پالس‌گونه

نوع مقاله: علمی - پژوهشی

نویسندگان

1 استادیار، گروه مهندسی عمران، موسسه آموزش عالی جهاد دانشگاهی خوزستان

2 دانشیار، دانشکده مهندسی عمران، دانشگاه سمنان

3 استادیار، دانشکده مهندسی عمران، دانشگاه سمنان

چکیده

شکل‌پذیری، مقاومت افزون، مصالح و نوع روش طراحی عواملی هستند که بر اندازه کاهش نیروی برش پایه سازه با ورود به محدوده غیرخطی تأثیر می‌گذارند. این عوامل در ادبیات فنی با عنوان پارامترهای عملکرد لرزه‌ای معرفی‌شده‌اند. در اکثر آیین‌نامه‌های لرزه‌ای ضریب رفتار که متناظر با نوع سیستم باربر جانبی تعریف می‌شود، دربرگیرنده آثار عوامل مذکور است. علی الرغم اینکه ضریب رفتار به‌صورت تجربی پیشنهاد شده است از دیدگاه تحلیلی در دو رده ظرفیت و نیاز قابل‌محاسبه است. دراین‌بین تأثیر زلزله‌های نزدیک گسل پالس گونه بر تخمین ضریب رفتار تحلیلی کمتر موردتوجه قرارگرفته است. به همین دلیل در این مقاله پارامترهای عملکرد لرزه‌ای به کمک روش‌های سنتی و پیشرفته بار افزون محاسبه و با مقادیر پیشنهاد شده در استاندارد 2800 مقایسه می‌شوند. دراین‌بین تأثیر الگوهای مختلف بار جانبی بر پارامترهای عملکرد لرزه‌ای و منحنی ظرفیت مدنظر قرارگرفته‌اند. نتایج در حوزه مدل‌های این مطالعه نشان می‌دهد که ضریب رفتار قاب خمشی فولادی ویژه پیشنهادی ویرایش سوم استاندارد 2800 برای سازه‌های کوتاه مرتبه محافظه‌کارانه است. با افزایش تعداد طبقات ضریب رفتار ظرفیت کمتر از مقدار آیین‌نامه برآورد شده لذا استفاده از ضریب رفتار آیین‌نامه در این مورد صحیح نیست. الگوهای مختلف بار درروش سنتی تأثیری بر مقدار ضریب رفتار ظرفیت ندارند. همچنین میانگین ضریب شکل‌پذیری کلی در تمامی مدل‌ها در حدود 2 برآورد شده و مستقل از روش تحلیل است. درنهایت ضریب رفتار نیاز متأثر از زلزله نزدیک پالس گونه بین 2/0 تا 4/0 مقدار پیشنهادی استاندارد 2800 بوده و درنتیجه به‌کارگیری ضریب رفتار(R) استاندارد 2800 در طراحی سازه در جهت اطمینان خواهد بود

کلیدواژه‌ها


عنوان مقاله [English]

Evaluation of Seismic Performance Parameters of Steel Moment Frames Using Conventional and Advanced Pushover Methods with Considering Higher Mode and Near Field Pulse-Type Effects

نویسندگان [English]

  • Navid Siahpolo 1
  • Mohsen Gerami 2
  • Reza Vahdani 3
1 Assistant Professor, Department of Civil Engineering, Khuzestan academic center for education, culture and research (ACECR)
2 Associate Professor, Department of Earthquake Engineering, Semnan University
3 Assistant Professor, Department of Earthquake Engineering, Semnan University
چکیده [English]

Ductility, over-strength, material properties and design methodology are the factors affect the reduction rate of the lateral strength of structure in nonlinear region. These factors are introduced as Seismic Performance Parameters, SPP, in technical literature. In seismic codes, the behavior factor, which defines corresponding to the lateral resisting system, covers the aforementioned parameters. Although the R-factor is proposed experimentally, but it could be calculated by means of analytical models in two categories which are demand and capacity R-factor. However, reviewing previous studies reveal that less attention has been paid to the effects of near-fault pulse type earthquakes on R-factor. Therefore, in this study, the SPP is calculated by conventional and advanced pushover methods and the results are compared with the R-factor proposed by Standard 2800-Ver.3. In addition, the effect of load patterns on SPP and capacity curved are considered. The result of this study shows that the proposed R-factor by Standard 2800-3rd for steel special moment frames is conservative for low-rise structures. Increasing the height decreases, the capacity R-factor thus using the R-factor of standard-2800 is inaccurate. The conventional load patterns have no considerable effect on capacity R-factor. In addition, the average of global ductility is about 2 for all models and it is almost independent of the analysis method. At the end, the demand R-factor resulted by near-fault pulse type ground motions is between 0.2 and 0.4 of the value proposed by standard-2800. Therefore, using R-factor introduced by standard-2800 is conservative for the elastic design procedure.

کلیدواژه‌ها [English]

  • Pushover
  • Behavior factor
  • Nonlinear demand
  • Near filed earthquake
  • Ductility
  • Seismic Performance Parameters

[1] محسن گرامی، نوید سیاه پلو، رضا وهدانی، " مقایسه ضریب رفتار تحلیلی قاب خمشی فولادی به کمک تحلیل پوش آور سنتی با الگوی بار زلزله نزدیک گسل دارای اثرات جهت پذیری پیش‌رونده "، اولین کنفرانس بین المللی و پنجمین کنفرانس ملی سازه و فولاد، انجمن سازه‌های فولادی ایران، مرکز همایش‌های بین‌المللی دانشگاه شهید بهشتی ایران، اسفند ماه 1393.

[2] نوید سیاه پلو، محسن گرامی، رضا وهدانی، " محاسبه ضریب رفتار سیستم های چنددرجه آزادی در برابر زلزله نزدیک گسل با اثرات جهت پذیری پیش‌رونده: پیشنهاد ضریب اصلاح "، هفتمین کنفرانس بین المللی زلزله شناسی و مهندسی زلزله، پژوهشگاه بین المللی مهندسی زلزله، تهران، اردیبهشت ماه 1394.

[3] محسن گرامی، امیر حسام مشایخی، نوید سیاه پلو، " ارزیابی روش تحلیل استاتیکی غیر خطی تطبیقی بر اساس جابجایی DAP در برآورد نیاز لرزه ای قاب های خمشی فولادی "، هفتمین کنفرانس بین المللی زلزله شناسی و مهندسی زلزله، پژوهشگاه بین المللی مهندسی زلزله، تهران، اردیبهشت ماه 1394.

[4] نوید سیاه پلو، محسن گرامی و رضا وهدانی،“ ارزیابی روش‌های بار افزون سنتی و بهنگام شونده در تخمین نیاز غیرخطی قاب خمشی فولادی در اثر زلزله نزدیک گسل با نگاه به اثر مودهای بالاتر “، مجله علمی پژوهشی اساس، انجمن مهندسین عمران ایران، (پذیرش چاپ بشماره 7457).

[5] Santa – Ana, P. and Miranda, E. “Strength reduction factors for Multi Degree Of Freedom systems.”, 12WCEE, 1446,P-1-8, 2000.

[6] Moghadam AS, Tso WK. “A pushover procedure for tall buildings” Proc. of the Twelfth European Conference on Earthquake Engineering, London, United Kingdom, PaperNo. 395, 2002.

[7] Chopra AK, Goel RK. “A modal pushover analysis procedure for estimating seismic demands for buildings." Earthquake Eng Struct Dyn;31(3):561-82, 2002.

[8] Chopra, A.K and Goel, R.K. “A modal Pushover Procedure to estimate seismic demands for buildings: Summery and evaluation”, fifth National conference on Earthquake, Istanbul, Turkey, Keynot Lecture,2003.

[9] Chopra AK, Goel RK, Chinatanapakdee C. “Evaluation of modified MPA procedure assuming higher modes as elastic ro estimate demands”. Earthqake Spectra, 20(3): 757-78, 2004.

[10] Gupta B, Kunnath SK. “Adaptive spectra-based pushover procedure for seismic evaluation of structures”. Earthquake Spectra;16(2):367-91, 2000.

[11] Aydinglu MN. “Anincremental response spectrum analysis procedure based on inelastic spectral displacement for multi-mode seismic performance ecaluation”. Bull Earthquake Engineering:1:3-36

[12] Kalkan E, Kunnath SK, “Adaptive modal combination procedure for nonlinear static analysis of builfding structures”. J Struct Eng ASCE, 132(11):1721-31, 2006.

[13] Matsumori T, Otani S, Shihora H, Kabeyasawa T. “Earthquake member deformation demand in reinforced concrete frame structures”. In: Proceeding of US-Japan workshop on performance-based earthquake engineering for RC building structures, 1999.

[14] Jan TS, Liu MW, Kao YC. “An upper-bound pushover analysis procedure for estimating the seismic demands of high-rise buildings”, Engineering Structures, 117–128, 2004.

[15] Kunnath SK. “Identification of Modal Combinations for Nonlinear Static Analysis of Building Structures”, Computer-Aided Civil and Infrastructure Engineering, 246–259, 2004.

[16] Requena M. Ayala G. “Evaluation of a simplified method for the determination of the nonlinear seismic response of RC frames”,  In: Proceeding of twelfth world conferece on earthquake engineerng, 2000.

[17] Elnashai AS. “Advanced inelastic static (pushover) analysis for earthquake applications”. Struct Eng Mech;12(1):51-69, 2001.

[18] Antoniou S, Pinho R. “Advantages and limitations of adaptive and non-adaptiveforce-based pushover procedures”. J Earthquake Eng;8(4):497-522, 2004.

[19] Antoniou S, Pinho R. “Development and verification of a displacement-based adaptive pushover procedure”. J Earthquake Eng;8(5):643-61, 2004.

[20] Izadiniaa M. Rahgozar MA. Mohammadrezaei O. “Response modification factor for steel moment-resisting frames by different pushover analysis methods.” Journal of Constructional Steel Research 79, pages 83–90, 2012.

[21] FEMA 356, “Prestandard and Commentary for the Seismic Rehabilitation of Buildings." Building Seismic Safety Council, Washington, DC., 2000.

[22] Applied Technology Council, A., "Seismic evaluation and retrofit of concrete buildings." Applied Technology Council, report ATC-40. Redwood City, 1996.

[23] FEMA 440, “Improvement of nonlinear static Seismic analysis procedures." Building Seismic Safety Council, Washington, DC: 32-35, 2005.

[24] SeismoSoft. SeismoStruct Ver 6.50—a computer program for static and dynamic nonlinear analysis of framed structures [online]. Available from URL:http://www.seismosoft.com, 2013.

[25] Computers and Structures, Inc.“Etabs 2013—extended 3D analysis of buildingsystems, nonlinear”, Berkeley, California 94704, USA.

[26] مرکز تحقیقات راه، مسکن و شهرسازی ، آیین نامه طراحی ساختمانها در برابر زلزله، استاندارد 2800، ویرایش سوم، 1387.

[27] گرامی، م. سیاه پلو، ن. «مهندسی زلزله کاربردی» انتشارات دانشگاه سمنان؛ چاپ اول، بهار 1393.