بررسی بارکمانش ارتجاعی ستون های یکنواخت و غیریکنواخت تحت بار محوری غیریکنواخت با استفاده از روش اجزای محدود

نوع مقاله: علمی - پژوهشی

نویسندگان

1 استادیار، دانشکده فنی و مهندسی، دانشگاه قم، قم، ایران

2 دانشجوی دکتری عمران- سازه، دانشگاه صنعتی نوشیروانی، بابل، ایران.

3 گروه مهندسی عمران، دانشکده عمران، قم، ایران

10.22065/jsce.2019.153522.1689

چکیده

نیاز به استفاده از اعضای غیریکنواخت در سازه از گذشته تا به حال مطرح بوده است در عین حال موضوعات و مراجع تحقیقی در این مورد زیاد نمی‌باشند. در مورد این اعضا یکی از مهمترین مسائلی که باید مورد بررسی قرار گیرد کمانش ستون‌ها است که در صورت رخ دادن، باعث از دست رفتن عضو می‌گردد که ممکن است منجر به فروپاشی موضعی یا کل ستون و یا سازه شود. در این مقاله روشی دقیق بر اساس اجزای محدود برای بررسی مسئله کمانش ارتجاعی ستون‌های یکنواخت و غیر یکنواخت با هر سطح مقطع و هر حالت بارگذاری ارائه شده است. این روش برای تمام شرایط مرزی تکیه‌گاهی قابل کاربرد است. در ابتدا ستون را به تعداد جزء دلخواه تقسیم-بندی کرده و سپس ماتریس سختی و ماتریس سختی هندسی را بر اساس روابط موجود برای هر جزء و سپس برای کل ستون تشکیل شده است و پس از اعمال شرایط تکیه‌گاهی با استفاده از رابطه‌ی مقدار مشخصه بار بحرانی کمانش بدست آمده است. نتایج این روش با روش سایر محققین که به صورت تقریبی محاسبه شده‌اند مقایسه شده است. روش ارائه شده علاوه بر دقت بالا دارای جامعیت نیز می-باشد و با کمک برنامه کدنویسی شده Matlab می‌توان از آن بهره گرفت.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

The Study of Elastic Buckling Load of Uniform & Non-Uniform Columns Under Non-Uniform Axial Loading Using Finite Element Method

نویسندگان [English]

  • Masooud Mahmoudabadi 1
  • Seyed mohammad Reza Hasani 2
  • Reza Akbari 3
1 Assistant Professor, Department of Civil Engineering, Faculty of Technology and the University of Qom, Qom, Iran
2 Phd student, Department of Civil Engineering, Noshirvani University of Technology, Babol, Iran.
3 civil engineering, qom
چکیده [English]

The need to use non-uniform members in the structures from the past till now had been proposed although the subjects and research references in this case are insufficient. Therefore the use of non-uniform members is inevitable and should be carefully examined. About this members the main subject that should be investigated is buckling that if it occures it leads to member failure which may leads to collapse of the local or entire structure. So the exact solution of buckling load of non-uniform columns is available only for simple cases. In this paper a method based on finite element method is used for studing the problem of elastic buckling load of non-uniform columns with general cases of cross-section and axial loading. In first the column is devided to arbitrary numbers of finite elements. Then the stiffness matrix and geometric stiffness matrix is obtained based on existing relationship for each element and then for overall column. After applying boundary conditions using the eigenvalue equation to obtain the critical buckling load .It is clear that the effects of changes in cross-section of a column appear in stiffness matrix and changes in axial loading in geometric stiffness matrix. The proposed method in addition to high accuracy is general and could be used by th Matlab codes. Results obtained from this method are compared to ones that presented by Serna et al. The procedure in this paper is rating as a exact solutions but Serna’s method is a closed form method that is from approximated solutions. The results are presented for uniform columns under non-uniform axial loading and non-uniform columns under non-uniform axial loading. Different non-uniform columns contain single web-tapered columns, double web-tapered columns and web-tapered & flange-tapered columns. Also results are presented for various end boundary conditions that contain hinged-hinged, clamped-clamped, hinged-clamped and clamped-free

کلیدواژه‌ها [English]

  • Elastic buckling
  • Uniform and Non-Uniform columns
  • Axial load
  • Eigenvalue
  • Finite Element

مقالات آماده انتشار، پذیرفته شده
انتشار آنلاین از تاریخ 03 اردیبهشت 1398
  • تاریخ دریافت: 01 آبان 1397
  • تاریخ بازنگری: 13 اسفند 1397
  • تاریخ پذیرش: 03 اردیبهشت 1398