تحلیل خطر لرزه‌ای احتمالاتی و تهیه طیف خطر یکنواخت استان بوشهر با فرض مدل هندسی خطی چشمه‌های لرز‌ه‌زا

نوع مقاله: علمی - پژوهشی

نویسندگان

1 استادیار، دانشکده مهندسی، دانشگاه خلیج فارس، بوشهر، ایران

2 کارشناسی ارشد مهندسی عمران، دانشکده مهندسی، دانشگاه خلیج فارس، بوشهر، ایران

چکیده

یافته‌های علمی نشان می‌دهند که با استفاده از روش‌های آماری و احتمالی تحت عنوان تحلیل خطر لرزه‌ای، می‌توان ایمن بودن سازه‌ها در مقابل زمین‌لرزه را تا حد مطلوبی برآورد نمود. مطالعه حاضر، نتایج این تحلیل را با استفاده از رهیافت احتمالی و در مواردی با استفاده از رهیافت تعیینی ارائه می‌دهد. این مطالعات به منظور بررسی وضعیت لرزه‌خیزی در استان بوشهر و با انتخاب گستره طرحی به شعاع 150 کیلومتر از مرزهای استان صورت گرفته است. بدین منظور منابع لرزه‌زا در گستره طرح با استفاده از نقشه‌های موجود، تعیین و سپس مدل مناسب از چشمه‌های لرزه‌زا به‌صورت خطی در منطقه ارائه شده است. فهرست زمین‌لرزه‌های روی داده در محدوده مطالعاتی از طریق اسناد تاریخی و ثبت دستگاهی جمع‌آوری شده و با استفاده از روش‌هایی، نواقص موجود در این کاتالوگ مرتفع گردیده است. دست‌یابی به توزیع پواسونی با به‌کارگیری روش پنجره زمانی- مکانی گاردنر و نوپوف و حذف پس‌لرزه‌ها و پیش‌لرزه‌ها انجام شده است. در ادامه با استفاده از روش‌های کیکو و گوتنبرگ- ریشتر، پارامترهای لرزه‌خیزی محاسبه و پس از انجام بررسی‌هایی بهترین نتایج انتخاب شده‌اند. در نهایت پارامترهای مذکور، با توجه به توان لرزه‌زایی هر گسل به گسل‌های منطقه اختصاص داده می‌شود. پس از ترکیب منابع لرزه‌زا و استفاده از روابط کاهندگی مناسب، تحلیل خطر لرزه‌ای صورت گرفته است. خروجی‌ها به صورت طیف خطر یکنواخت با استفاده از روش‌های تعیینی و احتمالی خطر لرزه‌ای، برای شهرهای مهم استان ارائه شده است. در نهایت نقشه پهنه‌بندی خطر لرزه‌ای برای دوره بازگشت‌های 75، 475 و 2475 سال ترسیم شده است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Probabilistic seismic hazard analysis and determination of uniform hazard spectrum of Bushehr province assuming linear source model

نویسندگان [English]

  • Amin Keshavarz 1
  • Batool Mansoori Moghaddam 2
1 Assistant Professor, School of Engineering, Persian Gulf University, Bushehr, Iran
2 MSc of Civil Engineering, School of Engineering, Persian Gulf University, Bushehr, Iran
چکیده [English]

Due to the high complexity in the mechanism of earthquakes occurrence, it is not possible to predict it accurately at a given site. Experiences and scientific findings indicate that using the statistical and probabilistic techniques entitled seismic hazard analysis, the safety of the structures can be desirably assessed. This study evaluates the seismic hazard of Bushehr province using the probabilistic and in some cases the deterministic approaches. To assess the seismic hazard, an area of 150 km around Bushehr province has been considered. Seismic linear sources have been prepared using the available maps. Historical and instrumental earthquake catalogue has been provided using the published catalogues. Foreshocks and aftershocks have been removed from the catalogue by applying the Gardner and Knopoff algorithm. Then, by employing the Keijko and Gutenberg-Richter methods, suitable seismicity parameters have been calculated. Finally, according to the seismic power of each fault, the mentioned parameters have been assigned to the faults. Seismic hazard analysis has been performed using the desirable ground motion prediction equations. Results have been presented as the deterministic and probabilistic acceleration response spectra for important cities. The probabilistic seismic hazard zonation maps have been provided for the return periods of 75, 475 and 2475 years.

کلیدواژه‌ها [English]

  • Seismic Hazard Analysis
  • Bushehr Province
  • zonation
  • Uniform Hazard Spectrum
  • Probabilistic

[1] Kramer, S.L. (1996). Geotechnical earthquake engineering. Pearson Education India.

[2] Wiemer, S., Giardini, D., Fäh, D., Deichmann, N. and Sellami, S. (2009). Probabilistic seismic hazard assessment of Switzerland: best estimates and uncertainties. Journal of Seismology, 13(4), 449-478.

[3] Khan, Z., El-Emam, M., Irfan, M. and Abdalla, J. (2013). Probabilistic seismic hazard analysis and spectral accelerations for United Arab Emirates. Natural hazards, 67(2), 569-589.

[4] Trianni, S.C.T., Lai, C.G. and Pasqualini, E. (2014). Probabilistic seismic hazard analysis at a strategic site in the Bay of Bengal. Natural Hazards, 74(3), 1683-1705.

[5] Ashadi, A.L., Harmoko, U., Yuliyanto, G. and Kaka, S.I. (2015). Probabilistic Seismic‐Hazard Analysis for Central Java Province, Indonesia. Bulletin of the Seismological Society of America, 105(3), 1711-1720.

[6] Mcguire, R.K. (2008). Probabilistic seismic hazard analysis: Early history. Earthquake Engineering & Structural Dynamics, 37(3), 329-338.

[7] پژوهشگاه ‌بین‌المللی ‌زلزله‌شناسی و مهندسی زلزله. (1385). مطالعات برآورد خطر و ریزپهنه‌بندی ژئوتکنیک لرزه‌ای شهر بوشهر. استانداری بوشهر.

[8] Ambraseys, N.N., Simpson, K.U. and Bommer, J.J. (1996). Prediction of horizontal response spectra in Europe. Earthquake Engineering & Structural Dynamics, 25(4), 371-400.

[9] Boore, D.M., Joyner, W.B. and Fumal, T.E. (1997). Equations for estimating horizontal response spectra and peak acceleration from western North American earthquakes: a summary of recent work. Seismological research letters, 68(1), 128-153.

[10] Campbell, K.W. and Bozorgnia, Y. (2003). Updated near-source ground-motion (attenuation) relations for the horizontal and vertical components of peak ground acceleration and acceleration response spectra. Bulletin of the Seismological Society of America, 93(1), 314-331.

[11] Zare, M. (1999). Contribution à l'étude de mouvements forts en iran. du catalogue aux lois d'atténuation.

[12] قلی‌پور، ی.، بزرگ‌نیا، ع.، رهنما، م. و همکاران. (1389). گزارش نهایی تحلیل خطر لرزه ای ایران- فازیک محدوده تهران بزرگ. معاونت برنامه ریزی و نظارت راهبردی ریاست جمهوری، دفتر فنی و تدوین معیارها و کاهش خطرپذیری زلزله، دانشگاه تهران.

[13] پژوهشگاه ‌بین‌المللی‌ زلزله‌شناسی و مهندسی زلزله. (1385). مطالعات برآورد خطر و پهنه‌بندی ژئوتکنیک لرزه‌ای در ساختگاه سایت 3 پارس، جلد اول.

[14] منصوری‌مقدم، ب. (1391). تحلیل احتمالی خطر لرزه­ای در استان بوشهر. پایان نامه کارشناسی ارشد، دانشگاه خلیج فارس، بوشهر، ایران.

[15] Wells, D.L. and Coppersmith, K.J. (1994). New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bulletin of the Seismological Society of America, 84(4), 974-1002.

[16] Mohajer-Ashjai, A. and Nowroozi, A.A. (1978). Observed and probable intensity zoning of Iran, Tectonophysics, 49, 149-150.

[17] Nowroozi, A.A. (1985). Empirical relations between magnitudes and fault parameters for earthquakes in Iran. Bulletin of the Seismological Society of America, 75(5), 1327-1338.

[18] Ambraseys, N.N. and Melville, C.P. (1982). A history of Persian earthquakes. Cambridge University press.

[19] Engdahl, E.R., Van Der Hilst, R. and Buland, R. (1998). Global teleseismic earthquake relocation with improved travel times and procedures for depth determination. Bulletin of the Seismological Society of America, 88(3), 722-743.

[20] کمیته‌ ملی ‌سدهای ‌بلند ‌ایران (1994). رابطه میان بزرگی امواج سطحی و بزرگی امواج حجمی. تهران، ایران.

[21] Papazachos, V., Papazachos, B., Papazachou, C. and Papazachou, K. (1997). The earthquakes of Greece. Editions Ziti.

[22] Heaton, T.H., Tajima, F. and Mori, A.W. (1986). Estimating ground motions using recorded accelerograms. Surveys in Geophysics, 8(1), 25-83.

[23] Gardner, J. and Knopoff, L. (1974). Is the sequence of earthquakes in southern California, with aftershocks removed, poissonian. Bulletin of the Seismological Society of America, 64(5), 1363-1367.

[24] Wiemer, S. (2001). A software package to analyze seismicity: ZMAP. Seismological Research Letters, 72(3), 373-382.

[25] Gutenberg, B. and Richter, C.F. (1956). Earthquake magnitude, intensity, energy, and acceleration (second paper). Bulletin of the seismological society of America, 46(2), 105-145.

[26] Kijko, A. and Sellevoll, M. (1992). Estimation of earthquake hazard parameters from incomplete data files. Part II. Incorporation of magnitude heterogeneity, Bulletin of the Seismological Society of America, 82(1), 120-134.

[27] Kijko, A. (2001). HN2.FOR Program: Seismic Hazard Assessment from Incomplete & Uncertain Data, Version B: Lambda and Beta are Calculated Simultaneously. Written by A. Kijko on 24 June 1988, Revised by P. Mantyiemi on 2 Dec. 1990, Realesded 2/08/04 Nov. 2001.

[28] Kijko, A. (2004). Estimation of the maximum earthquake magnitude, mmax. Pure and Applied Geophysics, 161(8), 1655-1681.

[29] Boore, D.M. and Atkinson, G.M. (2008). Ground-motion prediction equations for the average horizontal component of PGA, PGV, and 5%-damped PSA at spectral periods between 0.01 s and 10.0 s. Earthquake Spectra, 24, 99-138.

[30] Campbell, K.W. and Bozorgnia, Y. (2008). NGA ground motion model for the geometric mean horizontal component of PGA, PGV, PGD and 5% damped linear elastic response spectra for periods ranging from 0.01 to 10 s, Earthquake Spectra, 24, 139-171.

[31] Chiou, B.S.J. and Youngs, R.R. (2008). An NGA model for the average horizontal component of peak ground motion and response spectra. Earthquake Spectra, 24, 173-215.

[32] Shoja–Taheri, J., Naserieh, S. and Hadi, G. (2010). A test of the applicability of NGA models to the strong ground-motion data in the Iranian plateau. Journal of Earthquake Engineering, 14(2), 278-292.

[33] Ghasemi, H., Zare, M., Fukushima, Y. and Koketsu, K. (2009). An empirical spectral ground-motion model for Iran. Journal of seismology, 13(4), 499-515.

[34] Abrahamson, N. and Silva, W. (1997). Empirical response spectral attenuation relations for shallow crustal earthquakes. Seismological Research Letters, 68(1), 94-127.

[35] Ambraseys, N., Douglas, J., Sarma, S. and Smit, P. (2005). Equations for the estimation of strong ground motions from shallow crustal earthquakes using data from Europe and the Middle East: Vertical peak ground acceleration and spectral acceleration. Bulletin of Earthquake Engineering, 3(1), 55-73.

[36] Kaklamanos, J., Baise, L.G. and Boore, D.M. (2011). Estimating unknown input parameters when implementing the NGA ground-motion prediction equations in engineering practice. Earthquake Spectra, 27(4), 1219-1235.

[37] Shapira, A. and Van Eck, T. (1993). Synthetic uniform-hazard site specific response spectrum. Natural Hazards, 8(3), 201-215.

[38] IBC, (2006). International Building Code, International Code Council, Inc.