مدل احتمالاتی عملکرد لرزه‌ای سازه‌های ساختمان بتنی قالب‌تونلی

نوع مقاله: علمی - پژوهشی

نویسندگان

1 دانشیار، دانشگاه صنعتی خواجه نصیرالدین‌طوسی، تهران، ایران

2 کارشناس ارشد مهندسی زلزله، دانشگاه علم و فرهنگ، تهران، ایران

چکیده

علی‌رغم کاربرد گسترده سیستم قالب‌تونلی در ساخت ابنیه، متاسفانه آیین‌نامه لرزه‌ای مشخصی برای طراحی این سیستم ساخت منتشر نشده است. بر اساس یک جستجوی کتابخانه‌ای، اطلاعات محدودی از رفتار لرزه‌ای این نوع سیستم سازه‌ای در مدارک فنی و تحقیقاتی موجود است. بدین جهت، رفتارسنجی و بررسی عملکرد لرزه‌ای ساختمان‌های ساخته شده با این تکنیک، با احتساب عوامل موثر بر پاسخ، بر اساس نتایج مستدل عددی، در فرآیند تهیه یک آیین‌نامه لرزه‌ای مورد توجه می‌باشد. به علاوه نوین بودن سیستم و لذا عدم وجود تجربه آسیب در زلزله‌های گذشته و خصوصاً ماهیت تصادفی زلزله، اهمیت رویکرد احتمالاتی به مسئله و ضرورت توسعه منحنی‌های شکنندگی جهت استفاده در فرآیند جدید PBEE را آشکار می‌سازند. در این تحقیق، به بررسی رفتار لرزه‌ای ساختمان‌های قالب‌تونلی 2، 5 و 10 طبقه با پلان منظم پرداخته شده و ابتدا سطح عملکرد این ساختمان‌ها در زلزله طرح (دوره بازگشت 475 سال)، به روش تحلیل تاریخچه‌زمانی و بارافزون تعیین و سپس با استفاده از تحلیل دینامیکی افزایشی، برای مدل‌های مورد مطالعه، منحنی‌های شکنندگی به ازای سطوح مختلف خرابی در دیوارها و تیرهای رابط بینشان تهیه شده است. نتایج بیانگر ظرفیت و مقاومت بالای سیستم و عملکرد لرزه‌ای مناسب سازه‌هاست. به علاوه هر سه مدل، در زلزله طرح (دوره بازگشت 475 سال)، در سطح عملکردی قابلیت استفاده بی‌وقفه قرار گرفتند

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Probabilistic Seismic Performance Model for Tunnel Form Concrete Building Structures

نویسندگان [English]

  • S. Bahram Beheshti Aval 1
  • Vahid Mohsenian 2
1 Associate Professor, Department of Civil Engineering, K.N.Toosi University of Technology, Tehran, Iran
2 MSc in Earthquake Engineering, Department of Civil Engineering, University of Science and Culture, Tehran, Iran
چکیده [English]

Despite widespread construction of mass-production houses with tunnel form structural system across the world, unfortunately no special seismic code is published for design of this type of construction. Through a literature survey, only a few studies are about the seismic behavior of this type of structural system. Thus based on reasonable numerical results, the seismic performance of structures constructed with this technique considering the effective factors on structural behavior is highly noteworthy in a seismic code development process. In addition, due to newness of this system and observed damages in past earthquakes, and especially random nature of future earthquakes, the importance of probabilistic approach and necessity of developing fragility curves in a next generation Performance Based Earthquake Engineering (PBEE) frame work are important. In this study, the seismic behavior of 2, 5 and 10 story tunnel form structures with a regular plan is examined. First, the performance levels of these structures under the design earthquake (return period of 475 years) with time history analysis and pushover method are assessed, and then through incremental dynamic analysis, fragility curves are extracted for different levels of damage in walls and spandrels. The results indicated that the case study structures have high capacity and strength and show appropriate seismic performance. Moreover, all three structures subjected were in immediate occupancy performance level.

کلیدواژه‌ها [English]

  • Tunnel Form System
  • performance level
  • Incremental Dynamic Analysis
  • Fragility curves

]1[ میرقادری، س.ر.؛ سروقدمقدم، ع.؛ یوسف پور، ح.؛ پهلوان، ح.؛ (6 و 7 نوامبر 2009)؛ "ارزیابی رفتار لرزه‌ای ساختمان‌های بتنی ساخته شده با کاربرد قالب‌تونلی"؛ اولین کنفرانس بین‌المللی تکنولوژی بتن.

[2] Goel, R.K., Chopra, A.K.; (1998), “Period Formulas for Concrete Shear Wall Buildings”; Journal of Structural Engineering, 124(4), 426-433.

[3] Lee, L.H., Chang, K.K., Chun, Y.S.; (2000), “Experimental Formula for the Fundamental Period of RC Building with Shear Wall Dominant Systems”; The Structural Design of Tall Buildings, 9 (4), 295-307.

[4] Balkaya, C., Kalkan E.; (2003), “Estimation of Fundamental Periods of Shear-Wall Dominant Building Structures”; Earthquake Engineering & Structural Dynamics, 32 (7), 985-998.

[5] Balkaya, C., Kalkan, E.; (2004), “Relevance of R-Factor and Fundamental Period for Seismic Design of Tunnel-Form Building”; The13th World Conference on Earthquake Engineering, Vancouver, Canada.

[6] Tavafoghi, A., Eshghi, S.; (2008), “Seismic Behavior of Tunnel Form Concrete Building Structures”; The 14th World Conference on Earthquake Engineering, Beijing, China, 12-17 October.

[7] Tavafoghi, A. and Eshghi, S.; (2011), “Evaluation of Behavior Factor of Tunnel-Form Concrete Building Structures Using Applied Technology Council 63”; The Structural Design of Tall and Special Buildings, 22(8), 615-634.

[8] Balkaya, C., Yuksel, S.B., Derinoz, O.; (2012), “Soil-Structure Interaction Effects on the Fundamental Periods of the Shear-Wall Dominant Buildings”; The Structural Design of Tall and Special Buildings, DOI: 10.1002/tal.611, 416-430.

[9] Balkaya, C., Kalkan, E.; (2004), “Seismic Vulnerability, Behavior and Design of Tunnel Form Building Structures”; Engineering Structures, 26 (14), 2081-2099.

[10] Balkaya, C., Kalkan, E.; (2003), “Seismic Design Parameters for Shear-Wall Dominant Building Structures”; The 14th National Congress on Earthquake Engineering, Mexico.

[11] Yuksel, S.B., Kalkan, E.; (2007), “Behavior of Tunnel Form Buildings under Quasi-Static Cyclic Lateral Loading”; Structural Engineering and Mechanics, 27 (1), 99-115.

[12] Kalkan, E., Yuksel, S.B.; (2007), “Pros and Cons of Multi Story RC Tunnel-Form (Box-Type) Buildings”; The Structural Design of Tall and Special Buildings, 17 (3), 601-617.

]13[ بهشتی‌اول، س.ب.؛ محسنیان، و.؛ نیکپور، ن.؛ (1394)؛ "مشخصات لرزه‌ای سازه‌های بتنی قالب‌تونلی با پلان نامنظم"؛ مجله علمی ‌پژوهشی مکانیک سازه‌ها و شاره‌ها، دوره 5، شماره 3، صفحات 1 تا 15.

]14[ بهشتی‌اول، س.ب؛ محسنیان، و.؛ نیکپور، ن.؛ (1394)؛ "مطالعه‌ای بر عملکرد لرزه‌ای سازه‌های بتن‌آرمه قالب‌تونلی با پلان نامنظم"؛ مجله عمران مدرس، (پذیرفته شده و در شرف چاپ).

]15[ محسنیان، و.؛ (1391)؛ "تعیین ضریب رفتار برای ساختمان‌های بتنی قالب‌تونلی"؛ پایان‌نامه کارشناسی ارشد، دانشگاه علم و فرهنگ تهران.

]16[ محسنیان، و.؛ بهشتی‌اول، س.ب.؛ دربانیان، ر.؛ (1394)؛ "روش زمان‌دوام، جایگزینی مناسب برای روش مرسوم تحلیلی دینامیکی در تخمین رفتار لرزه‌ای ساختمان‌های بتنی قالب‌تونلی"؛ مجله علمی پژوهشی شریف، (پذیرفته شده و در شرف چاپ).

]17[ محسنیان، و.؛ رستمکلایی، س.؛ سروقدمقدم، ع.؛ بهشتی‌اول، س.ب.؛ (1394)؛ "بررسی حساسیت لرزه‌ای ساختمان‌های بتنی قالب‌تونلی به خروج از مرکزیت جرم در پلان"، مجله علمی پژوهشی شریف، (پذیرفته شده و در شرف چاپ).

]18[ مجموعه استانداردها و آیین‌نامه‌های ساختمانی ایران؛ (1393)؛ "آیین‌نامه طراحی ساختمان‌ها در برابر زلزله (استاندارد 2800)"؛ ویرایش چهارم، نشر مرکز تحقیقات راه، مسکن و شهرسازی.

[19] ACI Committee 318; (2007), “Building Code Requirements for Structural Concrete (ACI 318-08) and Commentary”; American Concrete Institute.

[20] Computers and Structures Inc. (CSI), Structural and Earthquake Engineering Software, ETABS, (2008), Extended Three Dimensional Analysis of Building Systems Nonlinear Version 9.5.0, Berkeley, CA, USA.

]21[ فناوری‌های تایید شده در راستای جزء 2-6، بند "د"، تبصره 6؛ (1386)، "گامی در صنعتی‌سازی ساختمان"؛ ویرایش اول، انتشارات مرکز تحقیقات ساختمان و مسکن، صفحات 11 و 12.

[22] Paulay, T., Binney, J.R.; (1974), “Diagonally Reinforced Coupling Beams of Shear Walls”; Shear in reinforced concrete, ACI Special Publications 42, 579-598.

[23] Computers and Structures Inc. (CSI), Structural and Earthquake Engineering Software, PERFORM-3D, (2007), Nonlinear Analysis and Performance Assessment for 3-D Structures, Version 4.0.3, Berkeley, CA, USA.

]24[ سازمان مدیریت و برنامه‌ریزی کشور، "دستورالعمل بهسازی لرزه‌ای ساختمان‌های موجود (نشریه شماره360)"، (1385)، فصل ششم.

[25] ASCE, (2007), “Seismic Rehabilitation of Existing Buildings”, ASCE/SEI41-06, American Society of Civil Engineers.

[26] Computers and Structures Inc. (CSI), PERFORM-3D Nonlinear Analysis and Performance Assesment for 3-D Structures, User Guide, Version 4, August 2006, Berkeley, CA, USA.

[27]PEER Ground Motion Database, Pacific Earthquake Engineering Research Center, Web Site: http://peer.berkeley.edu/peer_ground_motion_database

[28] FEMA, (2009), Recommended Methodology for Quantification of Buildings Seismic Performance Factors, Report No. FEMA P-695, prepared by Applied Technology Council, prepared for the Federal Emergency Management Agency, Washington, D.C., Part: Ground Motion Record Sets, Appendix A, A20-A24.

]29[ بهشتی‌اول، س.ب.؛ (1391)، "بهسازی لرزه‌ای ساختمان‌های موجود"؛ جلد اول، چاپ اول، انتشارات دانشگاه صنعتی خواجه نصیرالدین طوسی، فصل 15.

[30] Vamvatsikos, D., Cornell, C.A.; (2002), “Incremental Dynamic Analysis”; Earthquake Engineering Structural Dynamics, 31(3), 491-514.

[31] Cimellaro, G.P., Reinhorn, A.M., Bruneau, M., Rutenberg, A.; (2006), “Multi-Dimensional Fragility of Structures: Formulation and Evaluation”; Multi disciplinary Center for Earthquake Engineering Research (MCEER).

[32] Khalvati, A.H., Hosseini, M.; (2008), “A New Methodology to Evaluate the Seismic Risk of Electrical Power Substations”, The 14th WCEE, Beijing, China, October 12-17.