ارزیابی آسیب پذیری سازه های فولادی با دیوار برشی فولادی جدار نازک بر اساس توسعه منحنی های شکنندگی

نوع مقاله: علمی - پژوهشی

نویسندگان

1 دانشیار، دانشگاه سمنان، سمنان، ایران

2 کارشناس ارشد، دانشگاه سمنان، سمنان، ایران

3 دستیار تحقیقاتی، دانشگاه سمنان، سمنان، ایران

چکیده

منحنی‌های شکنندگی در ارزیابی خسارت لرزه‌ای ساختمان‌ها از اهمیت بالایی برخوردار می‌باشند. با تولید منحنی‌های شکنندگی، احتمال آسیب دیدن سازه‌ در برابر ارتعاشات لرزه‌ای  مورد بررسی قرار می‌گیرد. در این تحقیق با انجام 360 تحلیل ‌تاریخچه‌ زمانی بر روی سازه‌های 3، 10 و 20 طبقه، منحنی‌های شکنندگی تولید گردیده ‌است. منحنی‌های شکنندگی با استفاده از دو شاخص تغییر مکان بین طبقه‌ای و کرنش محوری نوار‌های معادل دیوار برشی توسعه ‌یافته ‌است. تحلیل‌های تاریخچه زمانی توسّط نرم‌افزار Perform-3D  با استفاده از 10 شتاب‌نگاشت دور و 10 شتاب‌نگاشت نزدیک گسل استفاده گردیده ‌است. در بررسی منحنی‌های تحلیل دینامیکی افزایشی مشاهده گردیده ‌است که سازه 3 طبقه پاسخ بزرگتری نسبت به سازه‌های 10 و 20 طبقه نشان می‌دهد. پس از تولید منحنی‌های شکنندگی مشاهده گردیده ‌است که سازه‌های میان‌ مرتبه و بلند مرتبه عملکرد بهتر و سطح خرابی کمتری در مقایسه با سازه های کوتاه مرتبه در زلزله‌های حوزه دور و نزدیک گسل دارند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

An investigation on vulnerability assessment of steel structures with thin steel shear wall through development of fragility curves

نویسندگان [English]

  • Mohsen Gerami 1
  • Saeed Ghaffari 2
  • Amir Mahdi Heidari Tafreshi 3
1 Associate professor, Department of earthquake engineering, Semnan University
2 MSc graduate, Department of earthquake engineering, Semnan University, Semnan, Iran
3 Research Assistant, Department of earthquake engineering, Semnan University, Semnan, Iran
چکیده [English]

Fragility curves play an important role in damage assessment of buildings. Probability of damage induction to the structure against seismic events can be investigated upon generation of afore mentioned curves. In current research 360 time history analyses have been carried out on structures of 3, 10 and 20 story height and subsequently fragility curves have been adopted. The curves are developed based on two indices of inter story drifts and equivalent strip axial strains of the shear wall. Time history analysis is carried out in Perform 3d considering 10 far field seismograms and 10 near fields. Analysis of low height structures revealed that they are more vulnerable in accelerations lower than 0.8 g in near field earthquakes because of higher mode effects. Upon the generated fragility curves it was observed that middle and high structures have more acceptable performance and lower damage levels compared to low height structures in both near and far field seismic hazards.

کلیدواژه‌ها [English]

  • IDA Curves
  • Fragility curves
  • Steel Shear Wall
  • time history analysis

[1]           Kharrazi MHK, “Analytical Method for Analysis and Design of Steel Plate Walls”. Report to Steel Structures Education Foundation (CISC). Vancouver, BC, Canada: Department of Civil Engineering, the University of British Columbia (2005).

[2]           M. R. Sheidaii, Sh. Jalili. “Comparison of the Progressive Collapse Resistance of Seismically Designed Steel Shear Wall Frames and Special Steel Moment Frames”. International Journal of Engineering (IJE), (6) (2015) 28

[3]           M. Gholhaki, M. Gerami, A. Mahdipour. “Story Shear and Story Drift Determination of Thin Steel Plate Shear Walls with Hinge Beam to Column Connections under Far and Near Fault Earthquakes”. Modares Civil Engineering Journal (M.C.E.J), (1) (2014).

[4]           H.Moharrami, A.Habibnejad korayem. “Advantages of Thin Steel Shear Wall for Retrofitting of Steel Structures”. Civil Engineering Journal steel & structure (2008).

[5]           Anagnos, T. Rojahn, C. and Kiremidjian, A.S. “NCEER-ATC Joint Study on Fragility of Buildings”, National Center for Earthquake Engineering Research (NCEER) (1995).

[6]           Murao, O. and Yamazaki, F. “Development of Fragility Curves for Buildings in Japan, Confronting Urban Earthquakes”. Report of Fundamental Research on the Mitigation of Urban Disasters Caused by Near-Field Earthquakes, (2000) 226-230

[7]           Akkar, S. Sucuoglu, H. and Yakut, A. “Displacement Based Fragility Functions for Low- and Mid-Rise Ordinary Concrete Buildings”. Earthquake Spectra, (4), (2005) 901-927

[8]           Anagnos, T. Rojahn, C. and Kiremidjian, A.S. “Building Fragility Relationships for California, Proceedings of the Fifth U.S”. National Conference on Earthquake Engineering, (1994) 389-396

[9]           Kennedy, R.P. Cornell, A.C. Campbell, R.D. Kaplan, S. and Perla, H.F. “Probabilistic Seismic Safety Study of an Existing Nuclear Power Plant”. Nuclear Eng. & Design, (2) (1980).

[10]         Murao, O. and Yamazaki, F. “Development of Fragility Curves for Buildings in Japan, Confronting Urban Earthquakes”: Report of Fundamental Research on the Mitigation of Urban Disasters Caused by Near-Field Earthquakes, (2000) 226-230

[11]         Stafford Smith, Alex Coull, Translate by haji kazemi,”Tall Building”.’ In: Tall Building Structures: Analysis and Design (In Persian) (1991).

[12]         American Institute of Steel Construction (AISC). “Seismic Provisions for Structural Steel Building”. Chicago (IL, USA): AISC: 2010

[13]         Tenth of issue of national building codes, :Design and Construction of Steel Structure” (2014), (In Persian).

[14]         Canadian Standards Association, , “Limit state Design of Steel Structure” (2001) CAN/CSA-S16-01

[15]         American Institute of Steel Construction (AISC). “Seismic Provisions for Structure Steel Building Chicago” (IL, USA): AISC: 2005.

[16]         Saeid Sabouri- Ghomi, Majid Gholhaki. “Tests of Two Three-Story Ductile Steel Plate Shear Walls”. The Twelfth East Asia-Pacific Conference on Structural Engineering and Construction ASCE(2008).

[17]         Kheyroddin, H.Esmaeili., “Evaluation of RC Shear and Steel Bracing Frame Interaction in Mid-Rise Steel Moment Frames Systems”.  (2010) 31-42

[18]         Dimitrios Vamvatsikos, C. Allin, “Incremental Dynamic Analysis”. Earthquake Engng Struct. Dyn. (2002) 491-514

[19]         Ufuk Hancilar, Eser Çaktı, Mustafa Erdik, Guillermo E. Franco, George Deodatis. “Earthquake Vulnerability of School Buildings: Probabilistic structural fragility analyses”, Soil Dynamics and Earthquake Engineering, (67), (2014) 169-178

[20]         Shinozuka M, Honorary Member, ASCE, Mario Q. Feng, Associate Member, ASCE, Ho-Kyung Kim and Sang Hoon Kim. “Nonlinear Static Procedure FOR Fragility Curve Development”, JORNAL OF ENGINEERING MECHANICS (2000).

[21]         AMERICAN SOCIETY OF CIVIL ENGINEERS Reston, Virginia, “Rehabilitation Requirements”.’ In: prestandard and commentary for the seismic rehabilitation of building (2012).