ارزیابی لرزه‌ای پل‌ها با میراگرجرمی تنظیم شده چندگانه در حالت موازی و سری

نوع مقاله : علمی - پژوهشی

نویسندگان

1 دانشیار، دانشکده مهندسی عمران، دانشگاه علم و صنعت، تهران، ایران

2 استادیار، گروه مهندسی عمران، واحد پرند، دانشگاه آزاد، پرند، یران

3 کارشناس ارشد،گروه مهندس عمران،دانشگاه علم و صنعت، تهران، ایران

چکیده

پل‌ها به دلیل ارتباط مستقیم با مکان‌های دیگر، جایگاه ویژه‌ای در زیرساخت‌های حمل و نقل دارند. این سازه‌ها با هدف حمل بارهای ترافیکی بزرگراه، عبور از هر مانعی و برقراری ارتباط موثر بین دو مقصد می باشد. خرابی‌های ناشی از زلزله و عوامل انسانی در پل‌ها آسیب‌های بسیار جدی وارد می‌کنند و در صورتی که حتی خرابی عضو باعث فرو ریختن کامل سازه نشود، هزینه مقاوم سازی بسیار بالایی را به همراه دارد. بدین منظور محققان و مهندسان استفاده از سیستم‌های کنترل سازه به همراه تحلیل لرزه ای دقیق جهت پیش بینی رفتار سازه را پیشنهاد کردند. هدف از این مطالعه بررسی تغییرمکان در پل‌ها با استفاده از میراگرهای جرمی تنظیم شده چندگانه در حالت موازی و سری می‌باشد. اثرات مدلسازی میراگرها بر روی پل روگذر ملولند برای اولین بار به کمک روش پیشنهادی در این مقاله بررسی می‌شود. در این تحقیق از سازه پل ارائه شده توسط وحید شیرگیر و همکاران به عنوان سازه نمونه جهت بررسی موارد مطروحه با نرم افزار اپنسیس استفاده می‌گردد. این پل با در نظرگرفتن ضوابط آیین نامه ای، بارهای ثقلی و دینامیکی طراحی شده و مشخصات سازه‌ای آن شامل ابعاد، نوع مصالح مورد استفاده بر اساس مقاله وحید شیرگیر و همکاران می‌باشد. در نهایت مشخص شد که میراگر جرمی تنظیم شده چندگانه به صورت موازی عملکرد مطلوب تری در کاهش بیشینه جابجایی نسبت به سایر میراگرهای جرمی تنظیم شده دارد. همچنین با توجه به نتایج، پاسخ سازه مجهز به میراگر جرمی تنظیم شده چندگانه تا 21 درصد کاهش و باعث بهبود سطح عملکرد لرزه‌ای پایه پل گردید.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Seismic Evaluation of Bridges with Multiple Tuned Mass Dampers in Parallel and Series Mode

نویسندگان [English]

  • Mohsen Ali Shayanfar 1
  • Masoud ZabihiSamani 2
  • Mohammad Amin Zare 3
1 Associate Professor, Department of Civil Engineering, Iran University of Science and Technology
2 Assistant Professor, Department of Civil Engineering, Parand Branch, Islamic Azad University, Tehran, Iran
3 Department of Civil Engineering, Iran University of Science and Technology, Tehran, Iran
چکیده [English]

Bridges have a special place in transportation infrastructure due to their direct connection with other places. These structures aim to carry highway traffic loads, pass any obstacle and establish effective communication between two destinations. Damages caused by earthquakes and human factors cause very serious damage to bridges, and if even the failure of a member does not cause the structure to collapse completely, the cost of retrofitting is very high. For this purpose, researchers and engineers suggested the use of structural control systems along with accurate seismic analysis to predict the behavior of the structure. The purpose of this study is to investigate the displacement in bridges using multiple tuned mass dampers in parallel and series mode. The effects of damper modeling on Meloland overpass bridge are investigated for the first time with the help of the proposed method in this article. In this research, the bridge structure presented by Vahid Shirgir et al. is used as a sample structure to investigate the issues raised with Opensees software. This bridge is designed by taking into account the regulations, gravity and dynamic loads, and its structural specifications include dimensions, type of materials used based on the article of Vahid Shirgir et al. Finally, it was found that the multiple tuned mass damper in parallel mode has a better performance in reducing the maximum displacement than other tuned mass dampers. Also, according to the results, the response of the structure equipped with multiple tuned mass dampers decreased by 21% and improved the seismic performance level of the bridge column.

کلیدواژه‌ها [English]

  • Bridge structure
  • Performance level
  • Structural control
  • Multiple Tuned mass damper
  • Displacement Control
[1]        S. Werner, J. Beck, and M. Levine, "Seismic response evaluation of Meloland Road Overpass using 1979 Imperial Valley earthquake records," Earthquake engineering & structural dynamics, vol. 15, no. 2, pp. 249-274, 1987.
[2]        J. G. Xu, D. C. Feng, S. Mangalathu, and J. S. Jeon, "Data‐driven rapid damage evaluation for life‐cycle seismic assessment of regional reinforced concrete bridges," Earthquake Engineering & Structural Dynamics, vol. 51, no. 11, pp. 2730-2751, 2022.
[3]        D. Skokandić, A. Vlašić, M. Kušter Marić, M. Srbić, and A. Mandić Ivanković, "Seismic assessment and retrofitting of existing road bridges: state of the art review," Materials, vol. 15, no. 7, p. 2523, 2022.
[4]        Y. Pang, L. Cai, W. He, and L. Wu, "Seismic assessment of deep water bridges in reservoir considering hydrodynamic effects using endurance time analysis," Ocean Engineering, vol. 198, p. 106846, 2020.
[5]        V. Ozsarac, R. Monteiro, and G. M. Calvi, "Probabilistic seismic assessment of reinforced concrete bridges using simulated records," Structure and Infrastructure Engineering, vol. 19, no. 4, pp. 554-574, 2023.
[6]        A. Javanmardi et al., "Pounding mitigation of a short-span cable-stayed bridge using a new hybrid passive control system," Engineering Analysis with Boundary Elements, vol. 134, pp. 625-636, 2022.
[7]        C. Zhang et al., "Seismic reliability research of continuous girder bridge considering fault-tolerant semi-active control," Structural Safety, vol. 102, p. 102322, 2023.
[8]        L. Wang, S. Nagarajaiah, W. Shi, and Y. Zhou, "Semi-active control of walking-induced vibrations in bridges using adaptive tuned mass damper considering human-structure-interaction," Engineering Structures, vol. 244, p. 112743, 2021.
[9]        J. Li, H. Zhang, S. Chen, and D. Zhu, "Optimization and sensitivity of TMD parameters for mitigating bridge maximum vibration response under moving forces," in Structures, 2020, vol. 28: Elsevier, pp. 512-520.
[10]      A. Matin, S. Elias, and V. Matsagar, "Distributed multiple tuned mass dampers for seismic response control in bridges," Proceedings of the Institution of Civil Engineers-Structures and Buildings, vol. 173, no. 3, pp. 217-234, 2020.
[11]      S. P. Ontiveros-Perez and L. F. F. Miguel, "Reliability-based optimum design of multiple tuned mass dampers for minimization of the probability of failure of buildings under earthquakes," in Structures, 2022, vol. 42: Elsevier, pp. 144-159.
[12]      M. Khazaei, R. Vahdani, and A. Kheyroddin, "Optimal location of multiple tuned mass dampers in regular and irregular tall steel buildings plan," Shock and Vibration, vol. 2020, pp. 1-20, 2020.
[13]      O. Akyürek, "Analysis of Different Placement Strategies of Multi-Tuned Mass Dampers Placed in Building Height," Arabian Journal for Science and Engineering, pp. 1-19, 2022.
[14]      L. S. Vellar, S. P. Ontiveros-Pérez, L. F. F. Miguel, and L. F. Fadel Miguel, "Robust optimum design of multiple tuned mass dampers for vibration control in buildings subjected to seismic excitation," Shock and Vibration, vol. 2019, pp. 1-9, 2019.
[15]      K. Bhowmik and N. Debnath, "Stochastic design of multiple tuned mass damper system under seismic excitation," Archive of Applied Mechanics, vol. 92, no. 1, pp. 383-404, 2022/01/01 2022, doi: 10.1007/s00419-021-02065-2.
[16]      S. Peng, L. Zhang, Y. Liu, and S. Li, "Parameters optimization and performance evaluation of multiple tuned mass dampers to mitigate the vortex-induced vibration of a long-span bridge," Structures, vol. 38, pp. 1595-1606, 2022/04/01/ 2022, doi: https://doi.org/10.1016/j.istruc.2022.01.012.
[17]      O. Araz and V. Kahya, "Optimization of multiple tuned mass dampers for a two-span continuous railway bridge via differential evolution algorithm," Structures, vol. 39, pp. 29-38, 2022/05/01/ 2022, doi: https://doi.org/10.1016/j.istruc.2022.03.021.
[18]      C. Wang and W. Shi, "Optimal design and application of a multiple tuned mass damper system for an in-service footbridge," Sustainability, vol. 11, no. 10, p. 2801, 2019.
[19]      V. Shirgir, A. Ghanbari, and A. Massumi, "Analytical model for time history analysis of single pier bridges considering soil–pile structure interaction effects," Applied Mathematical Modelling, vol. 93, pp. 257-275, 2021.
[20]      "opensees.berekeley.edu."
[21]      A. Rahmani, M. Taiebat, and W. L. Finn, "Nonlinear dynamic analysis of Meloland Road Overpass using three-dimensional continuum modeling approach," Soil Dynamics and Earthquake Engineering, vol. 57, pp. 121-132, 2014.
[22]      J. B. Mander, M. J. Priestley, and R. Park, "Theoretical stress-strain model for confined concrete," Journal of structural engineering, vol. 114, no. 8, pp. 1804-1826, 1988.
[23]      J. Zhang and N. Makris, "Seismic response analysis of highway overcrossings including soil–structure interaction," Earthquake engineering & structural dynamics, vol. 31, no. 11, pp. 1967-1991, 2002.
[24]      R. DesRoches, J. Padgett, K. Ramanathan, and J. Dukes, "Feasibility studies for improving Caltrans bridge fragility relationships," 2012.
[25]      A. Bathaei, M. Ramezani, and A. K. Ghorbani-Tanha, "Vibration control of the College Bridge using tuned mass dampers," (in eng), Modares Civil Engineering journal, vol. 16, no. 20, pp. 21-32, 2017. [Online]. Available: http://mcej.modares.ac.ir/article-16-11162-fa.html.
 [27]     C. Li, "Performance of multiple tuned mass dampers for attenuating undesirable oscillations of structures under the ground acceleration," Earthquake Engineering & Structural Dynamics, vol. 29, no. 9, pp. 1405-1421, 2000.
[28]      I. G. Buckle, I. Friedland, J. Mander, G. Martin, R. Nutt, and M. Power, "Seismic retrofitting manual for highway structures. Part 1, Bridges," Turner-Fairbank Highway Research Center, 2006.
[29]      B. D. Swartz, A. Scanlon, and A. J. Schokker, "AASHTO LRFD Bridge Design Specifications provisions for loss of prestress," PCI journal, vol. 57, no. 4, 2012.
[30]      C. D. Comartin et al., "A summary of FEMA 440: Improvement of nonlinear static seismic analysis procedures," in 13th World Conference on Earthquake Engineering, Vancouver, BC, Canada, 2004, pp. 1-14.
[31]      F. E. M. A. FEMA. (2010). HAZUS-MH MR5.
[32]      S. Werner, C. Crouse, L. Katafygiotis, and J. Beck, "Model identification and seismic analysis of Meloland Road overcrossing," Report to California Department of Transportation, 1993.