تحلیل قابلیت اعتماد مبتنی بر توابع حالت حدی چندگانه قاب‌های فلزی مجهز به میراگر ویسکوز مایع

نوع مقاله : علمی - پژوهشی

نویسندگان

1 استاد، دانشکده فنی و مهندسی، دانشگاه محقق اردبیلی، اردبیل، ایران

2 فارغ التحصیل دکترای مهندسی عمران، دانشکده مهندسی عمران، دانشگاه صنعتی نوشیروانی بابل، بابل، ایران

چکیده

در این مقاله به ارزیابی قابلیت اعتماد قاب‌های فلزی مجهز به میراگر ویسکوز مایع با استفاده از توابع حالت حدی چندگانه پرداخته شده است که توابع حالت حدی بر اساس پاسخ دریفت و شتاب سازه تعریف شده است. برای تحلیل قابلیت اعتماد و تعیین احتمال خرابی از روش شبیه‌سازی مونت-کارلو(MCS) استفاده شده است. برای آنالیز عددی، سه قاب فلزی 4، 8 و12 طبقه مجهز به میراگر ویسکوز خطی و غیرخطی طراحی شده بر اساس روش جابجایی مستقیم با توزیع میراگرها به دو روش توزیع مبتنی بر برش طبقه و توزیع یکنواخت، در نظر گرفته شده است. با اعمال عدم قطعیت در پارامترهای سازه و میراگر، برای هر کدام از قاب‌ها به تعداد لازم قاب‌های تصادفی با استفاده از روش نمونه‌برداری لاتین هایپر کیوب (LHS) تولید شده‌اند. سازه‌های تصادقی تولید شده تحت 20 رکورد زلزله قرار گرفته و تحلیل دینامیکی تاریخچه زمانی انجام شده است. با انجام تحلیل قابلیت اعتماد، احتمال خرابی سازه به ازای توابع حالت حدی تک و چندگانه با مقادیر حدی متناظر با سطوح عملکرد مختلف برای حداکثر نسبت دریفت و شتاب تعیین شده است. نتایج ارزیابی‌ها نشان می‌دهد که برای مقادیر حدی شتاب متناظر با سطح خرابی ملایم در دستورالعمل‌های لرزه‌ای نظیر مقدار حدیg6/0 در دستورالعملHazus-MH، افزایش احتمال خرابی سازه با توابع حدی چندگانه در مقایسه با تابع حدی فقط نسبت دریفت کمتر از %10 بوده است، در حالیکه برای مقدار حدی کمتر شتاب نظیر g3/0، این افزایش تا %87 می‌باشد. همچنین مشاهده شد علیرغم اینکه میراگرهای خطی و غیرخطی با توزیع‌های مختلف معیارهای مورد نظر در طراحی را برآورده کرده‌اند، در تحلیل قابلیت اعتماد عملکرد متفاوتی داشته‌اند. براساس نتایج بدست آمده پیشنهاد می‌شود تاثیر تابع حدی متناظر با شتاب در ارزیابی قابلیت اعتماد سازه‌های حساس به شتاب که دارای مقادیر حدی شتاب پایین‌تری می‌باشند در نظر گرفته شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Multiple limit state functions- based reliability analysis of steel frames equipped with FVD

نویسندگان [English]

  • Mohtasham Mohebbi 1
  • Solmaz Moradpour 2
1 Professor, Faculty of Technical and Engineering, University of Mohaghegh Ardabili, ArdabilT, Iran
2 Ph.D, Civil Engineering Department, Babol Noshirvani University of Technology, Babol, Iran
چکیده [English]

In this paper, the reliability of steel frames equipped with fluid viscous damper (FVD) is discussed using multiple limit state functions defined based on the drift ratio and acceleration of the structure. Monte-Carlo Simulation (MCS) method has been used for reliability analysis and determining the failure probability. For numerical analysis, three steel frames of 4-, 8- and 12 -storey equipped with linear and non-linear FVDs designed based on direct-displacement method have been considered which FVDs distributed using shear-based and uniform distribution methods. By applying uncertainties in the structural and FVD parameters, for each frame the necessary number of random frames have been generated by using the Latin-Hypercube Sampling (LHS) method. The generated random frames subjected to 20 earthquake records and the time history dynamic analysis has been performed. By performing reliability analysis, the structural failure probability for single and multiple limit state functions has been determined with threshold values for maximum drift ratio and acceleration corresponding to different performance levels. The results of evaluations show that for the acceleration limit values almost corresponds to the moderate failure level in seismic codes, such as the limit value of 0.6g in Hazus-MH requirements, the increase in the probability of structure failure with multiple limit state functions compared to the drift ratio limit state function was less than 10%, while for a lower limit value of acceleration such as 0.3g, this increase is up to 87%. It was also observed that despite the fact that linear and non-linear dampers with different distributions have met the design criteria, they performed differently in reliability analysis. According to the results, it is suggested to consider the effect of acceleration-based limit state function in evaluating the reliability of acceleration-sensitive structures that have lower acceleration limit values.

کلیدواژه‌ها [English]

  • Structural reliability
  • Multiple limit state function
  • Fluid viscous damper
  • Latin Hypercube
  • Performance level
[1] Soong, TT. and Spencer, BF. (2002). Supplemental energy dissipation: state-of-the-art and state-of-the-practice.               Engineering Structures, 24,243–259
[2] Pachideh, G., Gholhaki, M. and Kafi, M. (2020). Experimental and numerical evaluation of an innovative diamond-scheme bracing system equipped with a yielding damper. Steel and Composite Structures, 36(2), 197-211.
[3] Pachideh, G., Kafi, M., Gholhaki, M. (2020). Evaluation of cyclic performance of a novel bracing system equipped with a circular energy dissipater. Structures, 28, 467-481.
[4] Fathizadeh, SF., Dehghani, S., Yang, TY., Vosoughi, AR., Farsangi, EN. and  Hajirasouliha, I. (2021) Seismic performance assessment of multi-story steel frames with curved dampers and semi-rigid connections. Journal of Construction Steel Research, 182,106666.
[5]Hanson, RD. and Soong, TT. (2001). Seismic design with supplemental energy dissipation devices. Oakland, CA: EERI.
[6]Christopoulos, C. and Filiatrault, A. (2006). Principles of passive supplemental damping and seismic isolation. Pavia, Italy: IUSS Press.
[7]Seleemah, AA. and Constantinou, MC. (1997). Investigation of seismic response of buildings with linear and nonlinear fluid viscous dampers. Report No. NCEER- 97-0004, New York, National Center for Earthquake Engineering Research, State University of New York at Buffalo.
[8]Dong, B., Sause, R. and Ricles, JM. (2016) Seismic response and performance of a steel MRF building with nonlinear viscous dampers under DBE and MCE. Journal of Structural Engineering, 142(6), 04016023.
[9]De Domenico, D., Hajirasouliha, I. (2021). Multi-level performance-based design optimisation of steel frames with nonlinear viscous dampers. Bulletin of Earthquake Engineering, 19, 5015–5049.
[10]Pollini, N., Lavan, O. and Amir, O. (2018). Optimization-based minimum-cost seismic retrofitting of hysteretic frames with nonlinear fluid viscous dampers. Earthquake Engineering and Structural Dynamics, 47(15), 2985-3005.
[11]De Domenico, D. and Ricciardi, G. (2019). Earthquake protection of structures with nonlinear viscous dampers optimized through an energy-based stochastic approach. Engineering Structures, 179,523–39.
[12]Altieri, D., Tubaldi, E., Angelis, M., Patelli, E. and Dall’Asta, A. (2018). Reliability-based optimal design of nonlinear viscous dampers for the seismic protection of structural systems. Bulletin of Earthquake Engineering, 16(2): 963-982.
[13]Akehashi, H. and Takewaki, I. (2019) Optimal viscous damper placement for elastic-plastic MDOF structures under critical double impulse. Frontiers in Built Environment, 5, 20.
[14]Idels, O. and Lavan, O. (2021) Optimization-based seismic design of steel moment-resisting frames with nonlinear
viscous dampers. Structural Control and Health Monitoring,  28(1), e2655.
[16]Noruzvand, M., Mohebbi, M. and Shakeri, K. (2020)  Modified direct displacement-based design approach for structures equipped with fluid viscous damper. Structural Control and Health Monitoring, 27, e2465.
[17]Sorace, S. and Terenzi, G. (2009). Fluid viscous damper-based seismic retrofit strategies of steel structures: general concepts and design applications. Advanced Steel Construction, 5(3),325-342.
[18]De Domenico, D., Ricciardi, G. and Takewaki, I. (2019). Design strategies of viscous dampers for seismic protection of building structures: a review. Soil Dynanics and Earthquake Engineering, 118, 144-165.
[19]Aydin, E., Öztürk, B. and Dutkiewicz, M.(2019). Analysis of efficiency of passive dampers in multistorey buildings. Journal of Sound and Vibration, 439,17-28.
[20]Ramirez, OM., Constantinou, MC., Kircher, CA., Whittaker, AS., Johnson, MW., Gomez, JD. and Chrysostomou, CZ. (2000). Development and evaluation of simplified procedures for analysis and design of buildings with passive energy dissipation systems. MCEER-00-0010, Multidisciplinary Center for Earthquake Engineering Research, Buffalo, NY.
[21]Ramirez, OM., Constantinou, MC., Whittaker, AS., Kircher, CA., Johnson, MW. and Chrysostomou, CZ. (2003). Validation of the 2000 NEHRP provisions’ equivalent lateral force and modal analysis procedures for buildings with damping systems. Earthquake Spectra, 19(4),.981–999.
[22]Whittaker, AS., Constantinou, MC., Ramirez, OM., Johnson, MW. and Chrysostomou,CZ. (2003). Equivalent lateral force and modal analysis procedures of the 2000 NEHRP provisions for buildings with damping systems. Earthquake Spectra, 19 (4),.959–980.
[23]ASCE. (2017). Minimum design loads for buildings and other structures. SEI/ASCE 7-16, Reston, VA.
[24] Kim, J. and Choi, H. (2006). Displacement-based design of supplemental dampers for seismic retrofit of a framed structure. Journal of Structural Engineering, 132(6), 873-883.
[25]Lin, YY., Chang, KC. and Chen, CY. (2008). Direct displacement-based design for seismic retrofit of existing buildings using nonlinear viscous dampers. Bulletin of Earthquake Engineering; 6, 535–552.
[26]Lin, YY., Tsai, MH., Hwang, JS. and Chang, KC. (2003). Direct displacement-based design for building with passive energy dissipation systems. Engineering Structures, 25(1), 25-37.
[27]Sullivan, TJ. and Lago, A. (2012). Toward a simplified direct DBD procedure for the seismic design of moment resisting frames with viscous dampers. Engineering Structures, 35,140-148.
[28]Moradpour, S. and Dehestani, M. (2019). Optimal DDBD procedure for designing steel structures with nonlinear fluid viscous dampers. Structures, 22, 154-174.
[29]Tubaldi, E., Dall'Asta, A., Broggi, M. and Patelli, E. (2014). Reliability-based design of fluid viscous damper for seismic protection of building frames. In Vulnerability, Uncertainty and Risk , ASCE, 1767-1776.
[30]Dall’Asta, A., Dcozzese, F., Ragini, L. and Tubaldi, E. (2017). Effect of the damper property variability on the seismic reliability of linear systems equipped with viscous dampers. Bulletin of Earthquake Engineering , 15(11), 5025-5053.
[31]Scozzese, F., Dall’Asta, A. and Tubaldi, E. (2019). Seismic risk sensitivity of structures equipped with anti-seismic devices with uncertain properties. Structural Safety,77, 30-47.
[32]Kitayama, S. and Constantinou, MC. (2016). Development and evaluation of procedures for analysis and design of building with fluidic self-centering system. MCEER-16-0003, Multidisciplinary Center for Earthquake Engineering Research, Buffalo, NY.
[33]Kitayama, S. and Constantinou, MC. (2018). Seismic performance of buildings with viscous damping systems designed by the procedures of ASCE/SEI 7-16. Journal of Structural Engineering, 144(6), DOI: 10.1061/(ASCE)ST.1943-541X.0002048.
[34]Moradpour, S. and Dehestani, M. (2021). Probabilistic seismic performance of steel structures with FVDs designed by DDBD procedure. Journal of Building Engineering , 43, 102581.
[35]Scozzese, F., Gioiella, L., Dall’Asta, A., Ragni, L. and Tubaldi, E. (2021). Influence of viscous dampers ultimate capacity on the seismic reliability of building structures. Structural Safety, 91, 102096.
[36]Cimellaro, GP., Reinhorn, AM., Bruneau, M. and Rutenburg, A. (2006). Multi-dimensional fragility of strucutres: Formulation and evaluation. Technical Report MCEER-06-0002, University of Buffalo, New York, USA.
[37]Cimellaro, GP. and Reinhorn, AM. (2011). Multidimensional performance limit state for hazard fragility functions. Journal of Engineering Mechanics , 137, 47-60.
[38]De Risi. R, Goda, K. and Tesfamariam, S. (2019). Multi-dimensional damage measure for seismic reliability analysis. Structural Safety, 78, 1-11.
[39]Estes, AC. and Frangopol, DM. (1999). Repair optimization of highway bridges using system reliability approach. Journal of Structural Engineering, 125(7), 766-775.
[40]Estes, AC. and Frangopol DM. (2001). Bridge Lifetime System Reliability under Multiple Limit States. Journal of Bridge Engineering , 6(6), 523-528.
[41]Nielson, BG. and DesRoches, R. (2007). Seismic fragility methodology for highway bridges using a component level approach. Earthquake Engineering and Structural Dynamics, 36, 823-839.
[42]Caciati, F., Cimellaro, GP. and Domaneschi, M. (2008). Seismic reliability of a cable-stayed bridge retrofitted with hysteretic devices. Computers and Structures , 86, 1769-1781.
[43]Qiang, W., Ziyan, W. and Shukui, L. (2012). Seismic fragility analysis of highway bridges considering multi-dimensional performance limit state. Earthquake Engineering and Engineering Vibration, 11(2), 185-193.
[44]Bakhshinejad, S. and Mohebbi, M. (2021). Multiple failure functions based fragility curves for structures equipped with TMD. Journal of Earthquake Engineering and Engineering Vibration, 20, 471–482.
[45]Bakhshinejad, S. and Mohebbi, M. (2019). Multiple Failure Criteria-based Fragility Curves for Structures Equipped with SATMDs. Earthquakes and Structures, An International Journal, 17(5),463-475.
[46]Makris, N. and Constantinou, M. (1991). Fractional-derivative Maxwell model for viscous dampers. Journal of Structural Engineering, 117(9), 2708-2724.
[47]Verma, NP. (2001). Viscous dampers for optimal reduction in seismic response. Virginia Tech.
[48]Nowak, AS. and Collins, KR. (2013). Reliability of structures. University of Michigan, McGraw-Hill.
[49]Cornell, C.A. (1967). Bounds on the reliability of structural systems. Journal of Structural Engineering, ASCE, 93,171-200.
[50]Ellingwood, B., Galambos, TV., MacGregor, JG. and Cornell, CA. (1980). Development of a probability based load criterion for American National Standard A58. National Bureau of Standards, Washington, DC.
[51]Porter, KA., Beck, JL. and Shaikhutdinov, RV. (2002). Investigation of sensitivity of building loss estimates to major uncertain variables for the Van Nuys testbed. PEER Report 2002/03.
[52]Melchers, R.E. (1999). Structural Reliability Analysis and Prediction–John Wiley & Sons. New York, NY.
[53]ASCE/SEI 41-13. (2014). Seismic evaluated and retrofit rehabilitation of existing building. American Society of civil Engineers.
[54] Shakeri, K., Khansoltani, E. and Pessiki, S. (2018). Ground motion scaling for seismic response analysis by considering inelastic response and contribution of the higher modes. Soil Dynamics and Earthquake Engineering, 110, 70-85.
[55] Federal Emergency Management Agency. (2018). FEMA P-58-1 Seismic Performance Assessment of Buildings, Volume 1 - Methodology. California: Washington, D.C.
[56] Somerville PG, Smith N, Punyamurthula S, Sun J. (1997). Development of ground motion time histories for phase 2 of the FEMA/SAC steel project. SAC background document, report no. SAC/BD 97/04.
[57]FEMA 356. Pre-standard and commentary for the seismic rehabilitation of buildings. (2000). Federal Emergency Agency, Washington (DC).
[58]Zareian, F., Lignos, DG. and Krawinkler, H. (2010). Evaluation of seismic collapse performance of steel special moment resisting frames using FEMA P695 (ATC-63) methodology. In: Proceedings of the ASCE Structures Congress, Orlando, Florida.
[59]Elkady, A. and Lignos, DG. (2015). Effect of gravity framing on the overstrength and collapse capacity of steel frame buildings with perimeter special moment frames. Earthquake Engineering and Structural Dynamics, 44(8), 1289-1307.
[60]Mazzoni, S. et al. (2006). OpenSees–Open System for Earthquake Engineering Simulation– Command Language Manual. Pacific Earthquake Engineering Center, University of California, Berkeley.
[61]Hazus-MH, (2003). Hazus-MH 2.1, Technical Manual, Multi-hazard Loss Estimation Methodology, FEMA.