ارزیابی و اولویت بندی ریسک با استفاده از رویکرد ترکیبی نوین تصمیم گیری بر مبنای FMEA در محیط فازی (مطالعه موردی: پروژه کتابخانه مرکزی اراک)

نوع مقاله : علمی - پژوهشی

نویسندگان

1 دانشجوی دکتری مهندسی و مدیریت ساخت، گروه مهندسی عمران، دانشکده فنی و مهندسی، واحد اراک، دانشگاه آزاد اسلامی، اراک، ایران

2 گروه مهندسی عمران، واحد اراک، دانشگاه آزاد اسلامی، اراک، ایران

3 استادیار، گروه مهندسی صنایع، واحد اراک، دانشگاه آزاد اسلامی، اراک، ایران

4 استادیار، گروه مهندسی‌عمران، دانشکده فنی و مهندسی، واحد اراک، دانشگاه آزاد اسلامی، اراک، ایران

چکیده

ارزیابی و اولویت‌بندی ریسک، از مهم‌ترین مولفه‌های مدیریت ریسک در هر سازمان است. تکنیک تحلیل حالات و آثار شکست‌ها (FMEA) یکی از متداول‌ترین تکنیک‌ها برای ارزیابی و اولویت‌بندی ریسک‌های متعدد می‌باشد. علیرغم کاربردهای گسترده این روش در زمینه‌های مختلف با برخی از کاستی‌ها همراه است که می‌تواند منجر به نتایج غیرواقعی شود. در مطالعه حاضر، به منظور برطرف نمودن کاستی‌های تکنیک متداول FMEA، یک رویکرد ترکیبی نوین تصمیم‌گیری در سه مرحله پیشنهاد شده است. در مرحله اول، براساس پیشینه پژوهش و گروهی از متخصصان، 23 ریسک مربوط به پروژه‌ عمرانی شناسایی و در 6 گروه شامل فنی، پویایی محیط پروژه، تعدد ذینفعان پروژه، کارفرما، مدیریت پروژه و پیمانکار دسته‌بندی شدند. سپس در مرحله دوم، از روش تحلیل نسبت ارزیابی وزن‌دهی تدریجی (SWARA) تحت محیط فازی برای ارزیابی وزن معیارهای تصمیم‌گیری استفاده شد. در نهایت، خروجی‌ فازهای قبلی به عنوان مبنایی برای اولویت‌بندی رویدادهای متعدد ریسک با استفاده از روش ارزیابی تولید وزنی تجمعی (WASPAS) تحت محیط فازی بکارگرفته شد. برای نشان دادن مزایای بالقوه و کاربرد رویکرد ترکیبی پیشنهادی در یک مطالعه موردی اجرا و پیاده‌سازی گردید. نتایج بدست آمده حاصل از رویکرد ترکیبی نوین تصمیم‌گیری بر مبنایFMEA نشان می‌دهد که عملکرد پائین نیروی انسانی، ارتباط و همکاری ضعیف پیمانکار با سایر گروه‌ها، عدم مدیریت مناسب توسط پیمانکار در رابطه با مسائل مالی، حمایت تامین‌کنندگان و زیرمجموعه‌های آن و عدم هماهنگی منابع انسانی مرتبط به عنوان مهم‌ترین ریسک‌ها در پروژه کتابخانه مرکزی هستند. هم‌چنین پس از انجام آزمون صحت‌سنجی و تحلیل حساسیت مشخص شد که روش پیشنهادی معتبر بوده و می‌تواند اطلاعات ارزشمند و موثری در کمک به مدیریت ریسک پروژه‌های عمرانی فراهم نماید.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Risk Assessment and Prioritization Using a New Hybrid Decision-Making Approach Based on FMEA in Fuzzy Environment (Case Study: Arak Central Library Project)

نویسندگان [English]

  • Abolfazl Alvand 1
  • S.Mohammad Mirhosseini 2
  • Mohammad Ehsanifar 3
  • Ehsanollah Zeighami 4
  • Amir Mohammadi 4
1 PHD student in engineering and construction management, Department of Civil Engineering, Arak Branch, Islamic Azad University, Arak, Iran
2 Department of CivilEngineering, Arak Branch, Islamic Azad University, Arak,Iran
3 Assistant Professor, Arak Branch, Islamic Azad University, Arak, Iran
4 Assistant professor, Department of Civil Engineering, Arak Branch, Islamic Azad University, Arak, Iran
چکیده [English]

Risk assessment and prioritization is one of the most important components of risk management in any organization. Failure Mode and Effects Analysis (FMEA) is one of the most commonly used methods for assessment and prioritization of the multiple risks. Despite the widespread applications of this method in various industries, FMEA is associated with some shortcomings that can lead to unrealistic results. In this study, a new hybrid decision- making approach is presented in three phases to cover some of the shortcomings of the FMEA technique. In the first phase, based on the subject literature and getting help from a group of experts, 23 risks related to the construction project were identified and classified into six groups including technical, dynamics of the project environment, multiplicity of project stakeholders, employer, project management, and contractor. In the second phase, the fuzzy Stepwise Weight Assessment Ratio Analysis (SWARA) is used to measure the weights of decision criteria. In the third phase, the outputs of the previous phases are used as a basis to prioritize the risks using the Weighted Aggregated Sum Product Assessment (WASPAS) methods under fuzzy environment. To illustrate the potential benefits and applications of the proposed hybrid approach in a case study was implemented. The results obtained from the new hybrid approach to show that the low performance of the human resources, communication and cooperation of a poor contractor with another group, lack of proper management by the contractor regarding financial matters, supplier support, and subcontractors, and low performance of the human resources as the most important risks were recognized in the construction project of the Central Library of Markazi Province. Also, after performing the validation test and sensitivity analysis, it was found that the proposed method can provide valuable and effective information in helping to manage the risk of construction projects.

کلیدواژه‌ها [English]

  • Risk Assessment and Prioritization
  • Failure Mode and Effect Analysis (FMEA)
  • Stepwise Weight Assessment Ratio Analysis (SWARA) Method
  • Weighted Aggregated Sum Product Assessment (WASPAS) Method
  • Fuzzy Environment
[1] Zarei, K. Mohebban, B. Esmaeilzadeh, A. Jamalian, A. (2019). Classify the Iranian’s Construction Projects Key Risks by Structural Equation Modeling. Journal of Industrial Management, 13 (46), 1-14.
[2] Behroozi Gorabi, A. Mohammadi, Z. Javanmardi, E. (2017). Risk Identification and Evaluation of Shiraz Municipality Construction Projects Based on Risk Matrix. 3rd International Conference on Industrial Management and Engineering. Tehran.
[3] Zegordi, S. H. Nazari, A. Rezaee Nik, E. (2014). Project risk assessment by a hybrid approach using fuzzy-anp and fuzzy-topsis. Sharif Journal of Indusrial Engineering and Management, 29(1), 3-14.
[4] Rahimi, Y. Tavakkoli-Moghaddam, R. Iranmanesh, S. H. Vaez-Alaei, M. (2018). Hybrid approach to construction project risk management with simultaneous FMEA/ISO 31000/evolutionary algorithms: Empirical optimization study. Journal of Construction Engineering and Management, 144 (6), 04018043.
[5] Wehba, F. A. Hamzeh, F. R. (2013).  Failure mode and effect analysis as a tool for risk management in construction planning, 21st Annual Conference of the International Group for Lean Construction, pp. 685-694.
[6] Ward, S. C., & Chapman, C. (2003). Project risk management: processes, techniques and insights, John Wiley, Chichester, UK. 
[7] Hosseinzadeh, M. Gheidar Khaljani, J. (2013). A review of methods for detecting product design risks. Standard management and quality, 3(summer), 18-25.
[8] Somi, S. Seresht, N. G. & Fayek, A. R. (2020, November). Developing a risk breakdown matrix for the construction of on-shore wind farm projects. In Construction Research Congress 2020: Infrastructure Systems and Sustainability (pp. 43-51). Reston, VA: American Society of Civil Engineers.‏
[9] Qazi, A. Shamayleh, A. El-Sayegh, S., & Formaneck, S. (2020). Prioritizing risks in sustainable construction projects using a risk matrix-based Monte Carlo Simulation approach. Sustainable Cities and Society, 102576.‏
[10] Feinstein, Z. (2020). Continuity and sensitivity analysis of parameterized Nash games. arXiv preprint arXiv:2007.04388.‏
[11] Hsu, P. Y. Aurisicchio, M. Angeloudis, P. & Whyte, J. (2020). Understanding and visualizing schedule deviations in construction projects using fault tree analysis. Engineering, Construction and Architectural Management.‏
[12] Abad, F. Naeni, L. M. (2020). A hybrid framework to assess the risk of change in construction projects using fuzzy fault tree and fuzzy event tree analysis. International Journal of Construction Management, 1-13.‏
[13] Chen, H. Li, H. Wang, Y. & Cheng, B. (2020). A comprehensive assessment approach for water-soil environmental risk during railway construction in ecological fragile region based on AHP and MEA. Sustainability12(19), 7910.‏
[14] Fayek, A. R. (2020). Fuzzy Logic and Fuzzy Hybrid Techniques for Construction Engineering and Management. Journal of Construction Engineering and Management146(7), 04020064.‏
[15] Karamoozian, A.Wu, D. (2020). A hybrid risk prioritization approach in construction projects using failure mode and effective analysis. Engineering, Construction and Architectural Management.‏
[16] Soltanali, H. Rohani, A. Abbaspour-Fard, M. H. Parida, A., Farinha, J. T. (2020). Development of a risk-based maintenance decision making approach for automotive production line. International Journal of System Assurance Engineering and Management11(1), 236-251.‏
[17] Liu, H. C. (2019). FMEA Using Combination Weighting and Fuzzy VIKOR and Its Application to General Anesthesia. In Improved FMEA Methods for Proactive Healthcare Risk Analysis (pp. 151-172). Springer, Singapore.‏
[18] Wu, H. Liu, S. Wang, J. & Yang, T. (2020). Construction Safety Risk Assessment of Bridges in the Marine Environment Based on CRITIC and TOPSIS Models. Journal of Coastal Research108(SI), 206-210.‏
[19] Ahmadi, M. Behzadian, K. Ardeshir, A. Kapelan, Z. (2017). Comprehensive risk management using fuzzy FMEA and MCDA techniques in highway construction projects. Journal of Civil Engineering and Management, 23(2).300-310.
[20] Ghoushchi, SJ. Yousefi, S. Khazaeili, M. (2019). An extended FMEA approach based on the Z-MOORA and fuzzy BWM for prioritization of failures. Applied Soft Computing, 81:105505.
[21] Omidvar, M. Nirumand, F. (2017). Risk assessment using FMEA method and on the basis of MCDM, fuzzy logic and grey theory: A case study of overhead cranes. Journal of Health and Safety at Work, 7(1), 63-76.
[22] Liu, H. C., Chen, X. Q., Duan, C. Y., & Wang, Y. M. (2019). Failure mode and effect analysis using multi-criteria decision making methods: A systematic literature review. Computers & Industrial Engineering135, 881-897.‏
[23] Fattahi, R. Khalilzadeh, M. (2018). Risk evaluation using a novel hybrid method based on FMEA. extended MULTIMOORA, and AHP methods under fuzzy environment. Safety Science, 102, 290-300.
[24] Tavakolan, M. Mohammadi, A. (2018). Risk management workshop application: a case study of Ahwaz Urban Railway project. International Journal of Construction Management, 18(3):260-274.
[25] Ilbahar, E. Karaşan, A. Cebi, Kahraman, C. (2018). A novel approach to risk assessment for occupational health and safety using Pythagorean fuzzy AHP & fuzzy inference system. Safety science, 103:124-136.
[26] Tian, Z-p. Wang, J-q. Zhang, H-y. (2018). An integrated approach for failure mode and effects analysis based on fuzzy best-worst, relative entropy, and VIKOR methods. Applied Soft Computing, 72:636-646.
[27] Safari, H. Faraji, Z. Majidian, S. (2016). Identifying and evaluating enterprise architecture risks using FMEA and fuzzy VIKOR. Journal of Intelligent Manufacturing, 27(2):475-486.
[28] Vahdani, B. Salimi, M. Charkhchian, M. (2015). A new FMEA method by integrating fuzzy belief structure and TOPSIS to improve risk evaluation process. The International Journal of Advanced Manufacturing Technology, 77(1-4):357-368.
[29] Boral, S. Howard, I. Chaturvedi, SK. McKee, K. Naikan, V. (2020). An integrated approach for fuzzy failure modes and effects analysis using fuzzy AHP and fuzzy MAIRCA. Engineering Failure Analysis, 108:104195.
[30] Mardani, A. Nilashi, M. Zakuan, N. Loganathan, N. Soheilirad, S. Saman, MZ. Ibrahim, O. (2017). A systematic review and meta-Analysis of SWARA and WASPAS methods: Theory and applications with recent fuzzy developments. Applied Soft Computing, 57:265-292.
[31] Abdelgawad, M. Fayek, AR. (2010). Risk management in the construction industry using combined fuzzy FMEA and fuzzy AHP. Journal of Construction Engineering and Management, 136(9):1028-1036.
[32] Liu, H. C. You, J. X. You, X. Y. Shan, M. M. (2015). A novel approach for failure mode and effects analysis using combination weighting and fuzzy VIKOR method. Applied soft computing28, 579-588.‏
[33] Wang, L. E. Liu, H. C. Quan, M. Y. (2016). Evaluating the risk of failure modes with a hybrid MCDM model under interval-valued intuitionistic fuzzy environments. Computers & Industrial Engineering102, 175-185.‏
[34] Baloch, A. U.  Mohammadian, H. (2016). Fuzzy failure modes and effects analysis by using fuzzy Vikor and Data Envelopment Analysis-based fuzzy AHP. International Journal of Advanced and Applied Sciences3(8), 23-30.‏
[35] Nazeri, A. Naderikia, R. (2017). A new fuzzy approach to identify the critical risk factors in maintenance management. The International Journal of Advanced Manufacturing Technology92(9-12), 3749-3783.‏
[36] Vesković, S. Stević, Ž. Stojić, G. Vasiljević, M. Milinković, S. (2018). Evaluation of the railway management model by using a new integrated model DELPHI-SWARA-MABAC. Decision Making: Applications in Management and Engineering, 1(2), 34-50.
[37] Mavi, R. K. Goh, M. Zarbakhshnia, N. (2017). Sustainable third-party reverse logistic provider selection with fuzzy SWARA and fuzzy MOORA in plastic industry. The International Journal of Advanced Manufacturing Technology, 91(5-8), 2401-2418.
[38] Karabašević, D. Stanujkić, D. Urošević, S. (2015). The MCDM Model for Personnel Selection Based on SWARA and ARAS Methods. Management, (77), 1820-0222.
[39] Ehsanifar, M. Hemesy, M. (2019). A new hybrid multi-criteria decision-making model to prioritize risks in the construction process under fuzzy environment (case study: the Valiasr Street underpass project). International Journal of Construction Management, 1-16.
[40] Patil, S. K. Kant, R. (2014). A fuzzy AHP-TOPSIS framework for ranking the solutions of Knowledge Management adoption in Supply Chain to overcome its barriers. Expert Systems with Applications, 41(2), 679-693.
[41] Rani, P. Mishra, AR. Pardasani, KR. (2020). A novel WASPAS approach for multi-criteria physician selection problem with intuitionistic fuzzy type-2 sets. Soft Computing, 24(3):2355-2367.
[42] Badalpur, M. Nurbakhsh, E. (2019). An application of WASPAS method in risk qualitative analysis: a case study of a road construction project in Iran. International Journal of Construction Management, 1-9.
[43] Mohaghar, A. Hosseini Dehshiri, S.J. Arab, A. (2017). Investigating and evaluating project risks based on the best-worst approach. Organizational Resource Management Research, 7 (2), 157-173.
[44] Farughi, H. Alaniazar, S. Mousavipour, S.  Moradi, V. (2017). A practical framework based on Fuzzy FMEA to diagnose causes of delay in construction projectsIndustrial Management Studies, 15(45), 145-175.
[45] Kutlu, A. C. Ekmekçioğlu, M. (2012). Fuzzy failure modes and effects analysis by using fuzzy TOPSIS-based fuzzy AHP. Expert Systems with Applications39(1), 61-67.