بررسی عددی، تحلیلی عملکرد لرزه ای میراگرهای فولادی با ارتفاع و شکل های متفاوت

نوع مقاله : علمی - پژوهشی

نویسندگان

1 دانشگاه یاسوج/دانشکده مهندسی/ گروه عمران

2 پژوهشگر، فارغ التحصیل کارشناسی ارشد مهندسی سازه

چکیده

مهندسان ساختمان با مطالعه ساختمان های فولادی همواره به دنبال طراحی اتصالاتی هستند که علاوه بر افزایش ظرفیت دورانی اتصال، از شکست ترد سازه جلوگیری کرده و مرمت سازه پس از وقوع زلزله را میسر سازند. میراگرهای فولادی المان های مناسبی جهت رسیدن به این هدف بوده و ساخت و به کارگیری ساده، در مقابل سایر میراگرها به آنها برتری نسبتا بالایی داده است. این میراگرها با جلوگیری از تخریب شدید تیر و ستون های فولادی در هنگام وقوع زلزله، امکان بازسازی مجدد و کم هزینه ی ساختمان را نیز فراهم می کنند. در این پژوهش با مقایسه ی چندین نمونه از این میراگرها، استهلاک انرژی، میرایی و سختی موثر آنها با مدلسازی در نرم‌افزار ABAQUS مورد بررسی قرار گرفته است. طبق نتایج به دست آمده میراگرهای نوع SPD و DPD رفتارهای لرزه‌ای بهتری از خود نشان داده و با افزایش ارتفاع خواص لرزه ای تمامی میراگرها بهبود پیدا کرده است. میراگر نوع SSD با ارتفاع 15 سانتیمتر با انحراف معیار میرایی موثر 28 درصد در بین تمامی میراگرها دارای کمترین مقدار بوده و این موضوع نشانگر ثبات بیشتر میرایی موثر در این نوع میراگر است. مشاهده ی بار 5 تن در نمودار پوش اور تحلیل میراگرها نشان دهنده ی دقت بالای روابط طراحی می باشد. همچنین با شبیه سازی رفتار میراگرها در نرم افزار SAP، قاب دو بعدی 3، 7 و 15 طبقه با و بدون میراگرها، تحت شتابنگاشت 7 زلزله مورد بررسی قرار گرفته است. پاسخ قاب در شتابنگاشت های مختلف، نتایج یکسانی به دست نمی دهد. با این وجود با افزودن میراگرها و ایجاد شرایط مناسب برای دوران تیر فولادی، افزایش جذب انرژی قاب در تمامی مدل های دارای میراگر مشاهده گردیده است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Numerical and analytical investigation of seismic performance of steel dampers with different heights and shapes

نویسندگان [English]

  • ALI Mohammad Rousta 1
  • Masoud Amin Safaei Ardakani 2
  • Sohrab Shoja 2
1 Yasouj Uni./ Faculty of Civil Eng./ Dept. of Civil Eng.
2 Graduate of MSc. Structural Engineering
چکیده [English]

By studying steel buildings, civil engineers are always looking to design joints that, in addition to increasing the rotational capacity of the joint, prevent the brittle failure of the structure and allow the structure to be repaired after an earthquake. Steel dampers are suitable elements to achieve this goal and simple construction and use, has given them a relatively high advantage over other dampers. These dampers also provide the possibility of reconstruction and low cost of the building by preventing the severe destruction of steel beams and columns during an earthquake.

In this study, by comparing several samples of these dampers, their energy dissipation, damping and effective stiffness have been investigated by modeling in ABAQUS software. According to the results, SPD and DPD type dampers have better seismic behaviors and with increasing height, the seismic performance of all dampers have improved. Also, by simulating the behavior of dampers in SAP software, two-dimensional frames of 3, 7 and 15 story with and without dampers have been investigated under the acceleration of 7 earthquakes. The frame response does not give the same results at different accelerometers. However, by adding dampers and creating suitable conditions for the steel beam rotation, an increase in frame energy absorption has been observed in all models with dampers.

کلیدواژه‌ها [English]

  • Steel damper
  • Dissipated energy
  • Steel Panel Damper
  • Dual-Pipe Damper
  • Effective stiffness
[1] Saffari, H., Hedayat, A.A., Poorsadeghi Nejad, M. (2013). Post-Northridge Connections with Slit Dampers to Enhance Strength and Ductility. Journal of Constructional Steel Research, Vol. 80, Pages (138-152)
[2] CEN. Euro code 8: Design of Structures for Earthquake Resistance. Part 1: General
[3] Miller, D.K. (1998). Lessons Learned from the Northridge Earthquake. Engineering Structures, Vol. 20, Pages (249-260)
[4] Nakashima, M., Inoue, K., Tada, M. (1998). Classification of Damage to Steel Buildings Observed in the 1995 Hyogoken-Nanbu Earthquake, Engineering Structures, Vol.20, Pages (271-281)
[5] Oh, S.H., Kim, Y.J., Ryu, H.S., (2009). Seismic Performance of Steel Structures with Slit Dampers. Engineering Structures, Vol. 31, Pages (1997-2008)
[6] Engelhardt, M.D., Winneberger, T., Zekany, A.J., Potyraj, T.J. (1998). Experimental Investigation of Dog-Bone Moment Connections. AISC, 4th quarter, Pages (128-139)
[7] Suita, K., Tamura, T., Morita, S., Nakashima, M., Engelhardt, M.D. (1999). Plastic Rotation Capacity of Steel Beam-to-Column Connections Using a Reduced Beam Section and no Weld Access Hole Design. Journal of Structural and Construction Engineering (Transactions of AIJ), Vol. 64, Pages (177-184)
[8] Oh, S.H., Kim, Y.J., Moon, T.S. (2000). Cyclic Performance of Existing Moment Connections in Steel Retrofitted with a Reduced Beam Section and Bottom Flange Reinforcements. Journal of Civil Engineering, Vol. 34, Pages (199-209)
[9] Federal Emergency Management Agency (FEMA) (2000). Recommended Seismic Design Criteria for New Steel Moment-Frame Buildings, FEMA350, Washington (DC)
[10] Chen, C.C., Lee, L.M., Lin, M.C., (2003). Behaviour of Steel Moment Connections with a Single Flange Rib.  Engineering Structures, Vol. 25, Pages (1419-1428)
[11] Enayati, H., Rousta, A.M. (2020), The Investigation of the Effect of Earthquake Type on the Structures Behaviour with Tuned Liquid Damper with Variable Baffles Under Semi-Active Control. Journal of Structural and Construction Engineering (JSCE), doi: 10.22065/JSCE.2020.172223.1786
[12] Tsai, K., Chen, H., Hong, C., (1993). Design of Steel Triangular Plate Energy Absorbers for Seismic-Resistant Construction. Earthquake Spectra, Pages (505-528)
[13] Iwata, M., Kato, T., Wada, A., (2003). Performance Evaluation of Buckling-Restrained Braces in Damage-Controlled Structures. In: Behavior of Steel Structures in Seismic Areas: STESSA 2003, Pages (37-43)
[14] Sabelli, R., Mahin, S., Chang, C. (2003). Seismic Demands on Steel Braced Frame Buildings with Buckling-Restrained Braces. Engineering Structures, Vol. 25, Pages (655-666)
[15] Iwata, M., Murai, M., (2006). Buckling-Restrained Brace Using Steel Mortar Planks; Performance Evaluation as a Hysteretic Damper. Earthquake Engineering Structural Dynamics, Vol. 35, Pages (1807–1826)
[16] Tremblay, R., Bolduc, P., Neville, R., Devall, R., (2006). Seismic Testing and Performance of Buckling-Restrained Bracing Systems. Journal of Civil Engineering, Vol. 33, Pages (183-198)
[17] Climent, A.B., Oh S., Akiyama, H., (1998). Ultimate Energy Absorption Capacity of Slit-Type Steel Plates Subjected to Shear Deformations. Journal of Structural and Construction Engineering (Transactions of AIJ), Vol. 63, Pages (139-147)
[18] Lee, M.H., Oh, S.H., Huh, C., Oh, Y.S., Yoon, M.H., Moon, T.S., (2002). Ultimate Energy Absorption Capacity of Steel Plate Slit Dampers Subjected to Shear Force. Steel Structures, Vol. 2, Pages (71-79)
[19] Benavent Climent, A., (2006). Influence of Hysteretic Dampers on the Seismic Response of Reinforced Concrete Wide Beam-Column Connections. Engineering Structures, Vol. 28, Pages (580-592)
[20] Chan, R.W.K., Albermani, F., (2008). Experimental Study of Steel Slit Damper for Passive Energy Dissipation. Engineering Structures, Vol. 30, Pages (1058-1066)
[21] Oh, S.H., (1998). Seismic Design of Energy Dissipating Multi-Story Frame with Flexible-Stiff Mixed Type Connection. Ph.D. Thesis. Japan, Tokyo University
[22] Rousta, A.M., Zahrai. S.M. (2018). Parametric study of a proposed hybrid damping system: KE+ VLB in Chevron braced frames. Acta Technica, Vol.63, Pages (1-16)
[23] Teruna, D.R., Majid, T.A., Budiono, B., (2015). Experimental Study of Hysteretic Steel Damper for Energy Dissipation Capacity. Advances in Civil Engineering, 631726
[24] Azandariani, M.G., Rousta, A.M., Usefvand, E., Abdolmaleki, H., and Azandariani, A.G., (2021). Improved seismic behavior and performance of energy-absorbing systems constructed with steel rings. Journal of Structures, Vol.29, Pages (534-548)
[25] Köken, A., Köroğlu, M.A., (2011). An experimental Study on Energy Absorption Capacity of Steel Dampers Subjected to Shear Force. Int. J. Arts Sci., Vol. 4, Pages (25–32)
[26] Köken, A., Köroğlu, M.A., (2011). Steel Plate Slit Damper Using on Steel Frames. E-J. New World Sci, Acad., Vol. 6, 1A0219
[27] Köken, A., Köroğlu, M. A., (2013). Experimental Study on Beam-to-Column Connections of Steel Frame Structures with Steel Slit Dampers. Journal of Performance of Constructed Facilities, individual papers, 04014066-1
[28] Karavasilis, T.L., Kerawala, S., Hale, E., (2012). Hysteretic Model for Steel Energy Dissipation Devices and Evaluation of a Minimal-Damage Seismic Design Approach for Steel Buildings. Journal of Constructional Steel Research, Vol. 70, Pages (358–367)
[29] Chen, S.J., Jhang, C., (2011). Experimental Study of Low-Yield-Point Steel Plate Shear Wall under in-Plane Load. Journal of Constructional Steel Research, Vol. 97, Pages (977-985)
[30] Ma, X., Borchers, E., Pena, A., Krawinkler, H., Billington, S., Deierlein, G.G., (2010). Design and Behaviour of Steel Shear Plates with Openings as Energy Dissipating Fuses. Department of Civil and Environmental Engineering, Stanford University, the John A. Blume Earthquake Engineering Center, Report No. 173, 2010
[31] Tagawa, H., Yamanishi, T., Takaki, A., Chan, R.W.K., (2016). Cyclic Behavior of Seesaw Energy Dissipation System with Steel Slit Dampers. Journal of Constructional Steel Research, Vol. 17, Pages (24-34)
[32] Lee, C.H., Kim, J., Kim, D.H., Ryu, J., Ju, Y.K., (2016). Numerical and Experimental Analysis of Combined Behaviour of Shear type Friction Damper and Non-Uniform Strip Damper for Multi-Level seismic Protection. Engineering Structures, Vol. 114, Pages (75-92)
[33] Maleki, S., Mahjoobi, S., (2013). Dual-Pipe Damper. Journal of Constructional Steel Research, Vol. 85, Pages (81-93)
[34] Sahoo, D.R., Singhal, T., Taraithia, S., Saini, A., (2015). Cyclic Behaviour of Shear-and-Flexural Yielding Metallic Dampers. Journal of Constructional research, Vol. 114, Pages (247-257)
[35] Xu, L.Y., Nic, X., Fan, J.S., (2016). Cyclic Behaviour of Low-Yield-Point Steel Shear Panel Dampers. Engineering Structures, Vol. 126, Pages (391-404)
[36] Ahmadie Amiri, H., Najafabadi, E.P., Estekanchi. H., (2018). Experimental and Analytical Study of Block Slit Damper. Journal of Constructional Steel Research, Vol. 141, Pages (167–178)
[37] FEMA 461, (2007). Interim Testing Protocols for Determining the Seismic Performance Characteristics of Structural and Non-structural Components. Washington, D.C.
[38] ASCE Standard, ASCE/SEI 7-16, (2017). Minimum Design Loads and Associated Criteria for Buildings and Other Structures. Washington, D.C.
[39] Rousta, A.M., Zahrai. S.M. (2017). Cyclic Testing of Innovative Two-Level Control System: Knee Brace and Vertical Link in Series in Chevron Braced Steel Frame. Structural Engineering and Mechanics. Vol. 64, Pages (301-310)