اثر همزمان بار ضربه و آتش‌سوزی بر قاب‌های خمشی فولادی

نوع مقاله : علمی - پژوهشی

نویسندگان

1 دانشجوی دکتری زلزله، گروه عمران، واحد شهرکرد، دانشگاه آزاد اسلامی، شهرکرد، ایران

2 دکتری عمران، گروه عمران، واحد شهرکرد، دانشگاه آزاد اسلامی، شهرکرد، ایران

چکیده

برای محافظت سازه‌ها و نجات زندگی انسان‌ها در مقابل انفجار، درک صحیح از نحوه رفتار و اثر موج‌های انفجاری بر روی سازه‌ها، ضروری می‌باشد. از سویی سازه‌های فولادی حساسیت زیادی در برابر حرارت دارند. زوج انفجار و آتش در سازه‌های فولادی می‌تواند سبب بروز خرابی پیشرونده در سازه‌های فولادی شود. با توجه به اینکه معمولا انفجار در سازه‌های همراه با آتش سوزی است، بنابراین در این تحقیق اثر انفجار بر قاب‌های خمشی فولادی تحت شرایط آتش مورد بررسی قرار گرفت. به این منظور قاب خمشی فولادی هشت طبقه سه دهانه مدل‌سازی شده و تحت بارگذاری انفجار همزمان با اعمال آتش، به روش اجزاءمحدود مورد تحلیل دینامیکی غیرخطی قرار گرفته و نتایج در ترم‌های مقاومت، استهلاک انرژی، تغییرشکل و خرابی رخ داده در سازه مورد ارزیابی و مقایسه قرار گرفته‌اند. با توجه به نتایج این تحقیق، اعمال حرارت بر سازه تحت بار انفجار وضعیت سازه را بحرانی‌تر خواهد کرد. نتایج این تحقیق نشان می‌دهد اعمال حرارت بر قاب خمشی فولادی سبب کاهش ظرفیت برشی و استهلاک انرژی سازه و افزایش تغییرشکل و پتانسیل ایجاد خرابی پیشرونده در سازه خواهد شد. اعمال دمای 200 تا 800 درجه سانتی‌گرادی بر قاب خمشی فولادی باعث کاهش ظرفیت برشی و استهلاک انرژی قاب خمشی فولادی به ترتیب 8 تا 96 درصد و 5/5 تا 85 درصد نسبت به قاب فولادی تحت دمای محیط خواهد شد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

The effect of impact load on steel frames under fire conditions

نویسندگان [English]

  • Fazlolah Rasoulizadeh 1
  • Davoud Tavakoli 2
1 Ph.D., Department of Civil Engineering, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
2 Assistant Professor, Department of Civil Engineering, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
چکیده [English]

To protect structures and save lives from destruction, a proper understanding of how impact load behave and act on structures is essential. On the other hand, steel structures are very sensitive to heat. Impact load and fire in steel structures can cause progressive failure in steel structures. Due to the fact that impact load is sometimes associated with fire, so in this study the effect of impact load on steel frames under fire conditions was investigated. For this purpose, the eight-story three-span steel frame is modelled and subjected to non-linear dynamic analysis by finite element method under impact load simultaneously with fire, and the results in terms of resistance, energy dissipation, deformation and failure in the structure are evaluated and compared. According to the results of this study, applying heat to the structure under the impact load will make the condition of the structure more critical. The results of this study show that applying heat to the steel frame will reduce the shear capacity and energy dissipation of the structure and increase the deformation and the potential for progressive failure in the structure. Applying temperature of 200 to 800 ° C on the steel bending frame will reduce the shear capacity and energy dissipation of the steel bending frame by 8 to 96% and 5.5 to 85%, respectively compared to the steel frame under ambient temperature.

کلیدواژه‌ها [English]

  • Steel Frame
  • ّ Impact Load
  • Fire
  • Finite Element Method
  • Nonlinear Dynamic Analysis
[1] ISO, I. (1999). 834: Fire resistance tests-elements of building construction. International Organization for Standardization, Geneva, Switzerland.
[2] Al-Jabri, K.S., Buick Davison, J. and Burgess, I.W. (2008). Performance of beam-to-column joints in fire –a review, Fire Safety Journal, 43 (1), 50–62.
[3] Hosser, D. (2009). Guide engineering methods of fire protection, Altenberge.
[4] Chung, H.Y., Lee, C.-H., Su, W.J. and Lin, R.Z. (2010). Application of fire-resistant steel to beam-to-column moment connections at elevated temperatures, Journal of Constructional Steel Research, 66, 289-303.
]5[ Della Corte, G., Landolfo, R. and Mazzolani, F.M. (2001). Post-Earthquake Fire Resistance of Moment Resisting Steel Frames, Fire Safety Journal, 38, 593-612.
[6] Selamet, S. and Garlock, M. (2011). A Comparison between the Single Plate and Angle Shear Connection Performance under Fire. In: Proceedings of the ASCE Structures Congress, ASCE, Las Vegas, NV.
[7] Yahyaei, M, V. and Rezaeyan, A. (2016). The function of screw-to-handle connection in wood bending frames under fire”, Journal of Constructional Steel Research, 2 (3).
[8[ Memari, M., Mahmoud, H., & Ellingwood, B. (2014). Post-earthquake fire performance of moment resisting frames with reduced beam section connections. Journal of Constructional Steel Research, 103, 215-229.
[9] Song, T. Y., & Han, L. H. (2014). Post-fire behaviour of concrete-filled steel tubular column to axially and rotationally restrained steel beam joint. Fire safety journal, 69, 147-163.
[10] Behnam, B., Lim, P. J., & Ronagh, H. R. (2015). Plastic hinge relocation in reinforced concrete frames as a method of improving post-earthquake fire resistance. In Structures, Vol. 2, 21-31
]11[ Petrina, T. (2016). Fire Resistance of Steel Beam to Column End Plate Connections. Procedia engineering, 161, 143-149.
[12] Lee, C. H., Chiou, Y. J., Chung, H. Y., & Chen, C. J. (2011). Numerical modeling of the fire–structure behavior of steel beam-to-column connections. Journal of Constructional Steel Research, 67(9), 1386-1400.
[13] Rahnavard, R., & Thomas, R. J. (2018). Numerical evaluation of the effects of fire on steel connections; Part 1: Simulation techniques. Case Studies in Thermal Engineering, 12, 445-453.
[14] Urgessa, G. S., & Arciszewski, T. (2011). Blast response comparison of multiple steel frame connections. Finite Elements in Analysis and Design, 47(7), 668-675.
]15 [Forni, D., Chiaia, B., & Cadoni, E. (2017). Blast effects on steel columns under fire conditions. Journal of Constructional Steel Research, 136, 1-10.
[16] Zheng, C., Kong, X. S., Wu, W. G., Xu, S. X., & Guan, Z. W. (2018). Experimental and numerical studies on the dynamic response of steel plates subjected to confined blast loading. International Journal of Impact Engineering, 113, 144-160.
[17] Abdolahzadeh, Gh. Javanmard, J. and Tavakoli, H. (2016). Behavior of rigid beam-to-steel column joints with long end plates under explosive loads, Structure and Steel journal, 11(18), 91-107 (in Persian).
]18 [Khandelwal, K., El-Tawil, S., & Sadek, F. (2009). Progressive collapse analysis of seismically designed steel braced frames. Journal of Constructional Steel Research, 65(3), 699-708.
[19] Ibrahim, Y. E., & Nabil, M. (2019). Assessment of structural response of an existing structure under blast load using finite element analysis. Alexandria Engineering Journal58(4), 1327-1338.
[20] Denny, J. W., & Clubley, S. K. (2019). Long-duration blast loading & response of steel column sections at different angles of incidence. Engineering Structures178, 331-342.
[21] Forni, D., Chiaia, B., & Cadoni, E. (2017). Blast effects on steel columns under fire conditions. Journal of Constructional Steel Research136, 1-10.
[22] Teslim-Balogun, A., Málaga-Chuquitaype, C., & Stafford, P. J. (2019, April). A Numerical Study on the Structural Response of Steel Structures under Post-Blast Travelling Fires. In Structures Congress 2019: Blast, Impact Loading, and Research and Education (pp. 59-69). Reston, VA: American Society of Civil Engineers.
[23] Sun, Y., Wang, X., Ji, C., Gao, F., Yu, Y., Cheng, L., ... & Wu, J. Damage effect of steel circular tube subjected to fire and blast. Journal of Constructional Steel Research176, 106389.
[24] Rahnavard, R., Siahpolo, N., Naghavi, M., & Hassanipour, A. (2014). Analytical study of common rigid steel connections under the effect of heat. Advances in Civil Engineering, 2014.
[25] Ataei, A., Bradford, M. A., & Liu, X. (2016). Experimental study of flush end plate beam-to-column composite joints with precast slabs and deconstructable bolted shear connectors. In Structures, 7, 43-58
[26] ASTM, E. (2003). 119—05a. Standard test methods for fire tests of building construction and materials.
[27] FEMA. (2003). FEMA 27: Primer for design of commercial buildings to mitigate terrorists attacks.
[28] de Normalisation, C. E. (1993). Eurocode 3: Design of steel structures. Part 1.2: General rules–Structural fire design. Comité Européen de Normalisation, prEN, 1-2.