ارائه ی مدل سرمایه گذاری پروژه های انبوه سازی سازه های ال اس اف

نوع مقاله : یادداشت فنی

نویسندگان

1 دانشگاه فردوسی مشهد

2 استاد، دانشکده مهندسی، دانشگاه فردوسی مشهد، مشهد، ایران

3 دانشگاه صنعتی امیرکبیر

چکیده

سیستم ساختمانی قاب فولادی سبک یا ال‌اس‌اف به‌عنوان یکی از سیستم‌های نوین ساختمانی در بسیاری از کشورهای توسعه‌یافته مانند آمریکا، کانادا و ژاپن گسترش یافته‌است ولی در کشور ایران با استقبال قابل توجهی مواجه نشده‌است. یکی از دلایل اصلی این موضوع، عدم شناخت کافی مهندسان، پیمانکاران و کارفرمایان با این سیستم می‌باشد. هم‌چنین با توجه به خصوصیت این سیستم ساختمانی، پروژه‌های انبوه‌سازی، می‌تواند از موارد اصلی کاربرد آن باشد. به‌همین‌سبب هدف اصلی این پژوهش معرفی ریسک‌های اجرایی و مالی در پروژه‌های انبوه‌سازی سازه‌های ال‌اس‌اف می‌باشد.این سیستم برای اجرای ساختمان‌های عمدتاً کوتاه‌مرتبه و میان‌مرتبه استفاده می‌شود. اجرای موفق پروژه‌های انبوه‌سازی در سازه‌های ال‌اس‌اف نیازمند شناسایی دقیق ریسک‌های این سیستم و اتخاذ‌ روش مناسب جهت اجرا می‌باشد. علاوه بر اتخاذ روش اجرایی صحیح، انتخاب روش سرمایه‌گذاری صحیح نیز ضروری می‌باشد. به همین سبب در این پژوهش مدل انتخاب روش تأمین مالی پروژه‌های انبوه‌سازی سیستم ال‌اس‌اف بر مبنای ریسک‌های اجرایی و اقتصادی معرفی شده اند و ریسک های مؤثر در هر روش به صورت عدم قطعیت با توزیع نرمال توسط نظرات افراد خبره تعیین و مدل گردیدند و بوسیله ی شبیه سازی، برای هر روش، نرخ بازده سالانه محاسبه شد. هم چنین در این پژوهش پنج روش تأمین مالی بررسی گردید و مشارکت بخش خصوصی به عنوان روش با حداکثر بازده سالانه معرفی شد

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Determination Of Financing Method For Mass housing LSF Project

نویسندگان [English]

  • Ali Yeganeh 1
  • Moein YounesiHeravi 1
  • Hashem Shariatmadar 2
  • Mahdi Hokmollahi 3
1 Ferdowsi university of mashhad
2 Associated professor, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
3 Amir Kabir University
چکیده [English]

Light Steel Frame System (LSF) as a novel construction system is used in many developed countries such as USA, Canada and Japan but it is not tangibly requested in IRAN. Lack of knowledge in engineering, contractors and employers to this system is the main cause of little attention to it in IRAN. Considering the LSF system characteristics, mass housing project can be used as the main application of this system. Hence, dealing and managing the LSF operational and financial risks in mass housing projects is the main contribution of this paper. This system is used for implying of short-rise and mid-rise buildings (up to five floors). For Successful mass housing execution in LSF structures, exact risk identification and selection of execution method will be indispensable. selection of investment method is important therewith. So, in this article, model for selection of LSF mass housing system financing method respect to execution and economical risks is represented. In this model effective risks are determined by expert opinion and its uncertainty is modeled by normal distribution. Then for each method IRR index is calculated. In this article, 5 methods of investment considered and Public-Private Partnership (PPP) method is introduced as financing method with maximum IRR.

کلیدواژه‌ها [English]

  • LSF structures
  • Risk Identification
  • Financing method
  • Annually benefit index
  • Monte Carlo simulation
[1] معاونت برنامه ریزی و نظارت راهبردی رئیس جمهور. (1391).  آیین نامه طراحی و اجرای سازه‌های فولادی سرد نورد(بخش سازه). نشریه شماره612.
[2] کمیته­ی تدوین آیین نامه­ی 612 و 613 سازمان نظام فنی و اجرایی کشور، معاونت برنامه ریزی و نظارت راهبردی ریاست جمهوری. (1393). دستورالعمل طراحی و اجرای سیستم ساختمانی سبک فولادی. انتشارات دانشگاه شیراز.
[3] The European Light Steel Construction Association (LSK). (2005). European Lightweight Steel-framed Construction. Luxemburg: LSK Arcelor.
[4] Yescombe, E,R. (2014). Principles of Project Finance. 2nd Edition. USA: Elsevier, pp. 367-421.
[5] Osman, h.  El-Gohary, N. El-Diraby, T. (2006).Stakeholder management for public private partnerships. International Journal of Project Management, Volume 24(7).
[6] JIN, X.H. (2010). Determinants of Efficient Risk Allocation in Privately Financed Public Infrastructure Projects in Australia. JOURNAL OF CONSTRUCTION ENGINEERING AND MANAGEMENT, Volume 136(2), pp. 138-150.
[7] M. Cabrera. A.Suarez-Alem. L Trujillo. (2015). Public Private Partnerships in Spanish Ports: Current status future prospects. Utilities Policy, pp 1-11.
[8] V. Subramanian, K. (2016). Law and Project Finance. Journal of Financial Intermediation, Volume 25, pp. 154-177.
[9] Laila Mohamed Khodeir. Ahmed Hamdy Mohamed Mohamed. Identifying the latest risk probabilities affecting construction projects in Egypt according to political and economic variables.From January 2011 to January 2013. Housing and Building National Research Center. vol 11, pp. 129–135 (2015).
[10] Baozhuang, Niu; Jie, Zhang. (2014). Price, capacity and concession period decisions of Pareto-efficient BOT contracts with demand uncertainty. transportation research.
[11] Höglund, T., and Burstrand, H. (1998).  Slotted steel studs to reduce thermal bridges in insulated walls. Thin-Walled Struc., 32(1-3): pp. 81–109
[12] Burstrand, H. (1998). Light-gauge steel framing leads the way to an increased productivity for residential housing. J. Constr. St. Res. 46(1–3), pp. 183–6.
[13] Mahdavinejad, M. Hajian, M. Doroodgar A. (2011). Role of LSF technology in economic housing for urban Sustainability; case of Iran. Procedia Engineering. Vol 21.
[14] Mahdavinejad, M., Hajian, M., and Doroodgar, A. (2012). Modeling of LSF Technology in Building Design & Construction Case-study: Parand Residential Complex Iran. Adv. Mat. Res. 341-342: pp. 447-451.
[15] یگانه، علی. شریعتمدار، هاشم. (1396). شناسایی ریسک های مراحل طراحی، اجرا و ساخت در سازه های LSF. نشریه مهندسی سازه و ساخت. دوره 4 شماره 4.
[16] Dosumu, O., and Aigbavboa, C. O. (2018). Adoption of light steel (LS) for building projects in South Africa. Journal of Engineering, Design and Technology, 16(5), 711-733.
[17] Dudas, A. (2003). Light Steel Structures in residential house construction. Period. Polytech. Ser. 47(1): pp. 133–136.
[18] Fallah, M.H. (2005). Sustainable building construction. World Sustainable Building Conference. Tokyo.
[19] Soares, N., Santos, P., Gervásio, H., Costa, J.J., and Simões da Silva, L. (2017). Energy efficiency and thermal performance of lightweight steel-framed. (LSF) construction: A review. Ren. Sus. Ene. Rev. 78; pp. 194–209.
[20] Gerami, M. Lotfi, M.Nejat R. (2015). Inelastic behavior of cold-formed braced walls under monotonic and cyclic loading.  International Journal of Advanced Structural Engineering (IJASE).
[21] EsmaeiliNiari, S., Rafezy, B., and Karim, A. (2015). Seismic behavior of steel sheathed cold-formed steel shear wall: Experimental investigation and numerical modeling. Thin-Walled Struc. 96, pp. 337–347.
[22] Celik, T., and Kamali, S. (2018). Multidimensional Comparison of Lightweight Steel and Reinforced Concrete Structures: A Case Study. Tehnicki Vjesnik. 25(4).
[23] Veljkovic, M., and Johansson, B. (2006). Light steel framing for residential buildings. Thin-Walled Struc. 44(12), pp. 1272–1279.
 
[24] Davies, J.M. (2006).  Light gauge steel cassette wall construction – theory and practice. J. Constr. St. Res. 62.
 
[25] Murtinho,V., and Ferreira, H. (2010). Architectural concept for multi-storey apartment building with light steel framing. St. const. 3(3), pp. 163-168.
[26] Schafer, B.W. (2011). Cold-formed steel structures around the world A review of recent advances in applications, analysis and design. St. Const. 4(3), pp. 141-149.
[27] Franklin, N., Heffernan, E., and McCarthy, T. (2020). The Case for Cold-Formed Steel Construction for the Mid-Rise Residential Sector in Australia: A Survey of International CFS Professionals. Proc., ACMSM25, Springer Singapore, 841-851.
[28] Gorgolewski, M. (2007). Developing a simplified method of calculating U-values in light steel framing. Build. and Envir., 42(1), pp. 230–236. 
[29] Trevathan, J.W., and Pearse, J.R. (2008). The effect of workmanship on the transmission of airborne sound through light framed walls. App. Acoust. 69, pp. 127-131.
[30] Lawson, R.M., and Ogden, RG. (2008). Hybrid light steel panel and modular systems. Thin-Walled Struc. 46, pp. 720–730
[31] Santos, P., Simões da Silva, L., Gervásio, H., and Lopes, A.G. (2010). Parametric analysis of the thermal performance of light steel residential buildings in Csb climatic regions. J.  Build. Phys. 35(1), pp 7–53.
[32] Gomes, A.P., de Souza, H.A., and Tribess, A. (2013). Impact of thermal bridging on the performance of buildings using Light Steel Framing in Brazil. App. Ther. Eng. 52(1), pp. 84–89.
 [33] Ariyanayagam,A,D. Mahendran,M. (2014). Numerical modeling of load bearing light gauge steel frame wall systems exposed to realistic design fires. Thin-Walled Structures.
[34] De Angelis, E., and Serra, E. (2014). Light steel-frame walls: thermal insulation performances and thermal bridges. Ene. Proc. 45, pp. 362-371.
[35] Paul, S., Radavelli, G., and da Silva, A.R. (2015). Experimental evaluation of sound insulation of light steel frame façades that use horizontal inter-stud stiffeners and different lining materials. Buil. Env. 94, pp. 829-839.
[36] Kang,C,C. Feng,C.M. (2009). Risk measurement and risk identification for BOT projects: A multi-attribute utility approach. Mathematical and Computer Modelling, Volume 49 (9-10), pp. 1802–1815.
[37] Ke,Y. Wang,S. Chan,A.P.C. Lam,P.T.I. (2010). Preferred risk allocation in China‟s public–private partnership (PPP) projects. International Journal of Project Management, Volume 28 (5), pp. 482–492.
[38] Lam,K.C. Wang,D. Lee, P,T,K. Tsang,Y.T. (2007). Modelling risk allocation decision in construction contracts. International Journal of Project Management, Volume 25 (5), pp. 485–493.
[39] Khazaeni,G. Khanzadi,M; Afshar,A. (2012). Fuzzy adaptive decision making model for selection balanced risk allocation. International Journal of Project Management, Volume 30 (4), pp. 511–522
[40] KarimiAzari,A. Mousavi,N; Mousavi,S.F; Hosseini,S.B. (2011) Risk assessment model selection in construction industry. Expert Systems with Applications, Volume 38 (8), Page 9105 –9111.
[41] Grimsey,D; Lewis,M. (2002). Evaluating the risk of public private partnership for infrastructure projects. International journal of project manajment. 20, pp. 107-118.
[42] Lyer,K.C. Sagheer,M. (2010). Hierarchical Structuring of PPP Risks Using Interpretative Structural Modeling. JOURNAL OF CONSTRUCTION ENGINEERING AND MANAGEMENT, Volume 136 (2), pp. 151-159.
[43] Pantelias,A. Zhang,Zh. (2010). Methodological Framework for Evaluation of Financial Viability of Public-Private Partnerships: Investment Risk Approach.  JOURNAL OF INFRASTRUCTURE SYSTEMS, Volume 16 (4), pp. 241-250 .
[44] Richard, B. Istemi, D. (2017). Risk transfer and stakeholder relationships in Public Private Partnerships. Accounting Forum. 41(1).
[45] Li B. (2003). Risk management of public/private partnership projects. PhD thesis. School of the Built and Natural Environment. Glasgow Caledonian University.
[46] Jakukite, J. analysing ppp. (2012). master thesis, aarthus university.
[47] Lina, M. S. Carlos A. A. Jose L. P. (2016). A Proposal for Risk Allocation in Social Infrastructure Projects Applying PPP in Colombia. Procedia Engineering. 145.
[48]  Askari, M. Shokrizade, H.R. (2014). An Integrated Method for Ranking of Risk in BOT Projects. Procedia - Social and Behavioral Sciences, Volume 109, pp. 1390-1394.
[49] Bromilow, Francis J. (1981). The impact of inflation and industrial strife on the construction industry in Australia. Engineering Costs and Production Economics,Volume 5, Issues 3–4.
[50] Zeng,J; An,M; Smith,N.J. (2007). Application of a fuzzy based decision making methodology to construction project risk assessment. International journal of project management; 27, pp. 589-600.
[51] Rahman MM. Kumaraswamy MM. (2002). Risk management trends in the construction industry: moving towards joint risk management. Eng Construct Archit Manage, 9(2), pp. 131–51.
[52] Perez, David, Gray, Jason, Skitmore, Martin (2017) Perceptions of risk allocation methods and equitable risk distribution: a study of medium to large Southeast Queensland commercial construction projects. International Journal of Construction Management, 17(2), pp. 132-141.
[53] Bilal M. Ayyub. (2003). Risk Analysis in Engineering and Economics”. CRC Press.
[54] Abdelgawad,m.s. (2011). Hybrid decision support system for risk critically assessment & risk analysis; master thesis; University of Alberta.
[55] Chin,K.S; Wang,Y.M; Poon,G.K; Yang,J.B. (2009). failure mode & effects analysis using a grup-based evidential reasoning approach”; Computer and operation research, 36, pp. 1768-1779.
[56] Chang, K.H; Cheng,C.H; chang,Y.H. (2010). Reprioritization of failures in a silane supply system using an intuitionistic fuzzy set ranking technique. soft computering; 14, pp. 285-298.
[57] Bassiony , Mohamed Sayed. El-Karim, Ahmed Abd. El Nawawy, Omar Aly Mosa. Abdel-Alim, Ahmed Mohamed. (2015). Identification and assessment of risk factors affecting construction projects. Housing and Building National Research Center.
[58] Fayek Aziz, Remon. (2013). Factors causing cost variation for constructing. wastewater projects in Egypt. Alexandria Engineering Journal,  52. Pp. 51–66.
[59] Dziadosz, Agnieszka. Rejment, Mariusz. (2015). Risk analysis in construction project - chosen methods. Procedia Engineering. V 122, pp. 258 – 265.
[60] Wang, M. Chou, H. (2003). Risk allocation and risk handling of highway projects in Taiwan. Journal of Management in Engineering. Volume19(2), pp. 60–68.
[61] Ashley, D. B. Diekmann, J. E. Molenaar, K. R. (2006). Guide to risk assessment and allocation for highway construction management. Federal Highway Administration, US Department of Transportation.
[62] Ahmadi, M. Behzadian, K. Ardeshir,A.Kapelan, Z. (2015). COMPREHENSIVE RISK MANAGEMENT USING FUZZY FMEA AND MCDA TECHNIQUES IN HIGHWAY CONSTRUCTION PROJECTS. JOURNAL OF CIVIL ENGINEERING AND MANAGEMENT,  pp. 300-310
[63] Rivera,S.S; Mcleod,J.E; Nunez. (2009). recommendationsgenerated about a discountinus distillation plant of biofuel; proceedings of the world congress on engineering, London.
[64] Wibowo,A. S.M. Kochendörfer.B. (2005). Financial Risk Analysis of Project Finance in Indonesian Toll Roads. JOURNAL OF CONSTRUCTION ENGINEERING AND MANAGEMENT. pp. 963-972.
[65] Carbonara,N; Costantino,N; Pellegrino.R. (2014). Concession Period for Ppps: A Win -Win Model for a Fair Risk Sharing. International Journal of Project Management. 7, pp. 1223-1232
[66] Charles,Y.J. Cheah,J. (2006). Valuing governmental support in infrastructure projects as real options using Monte Carlo simulation; Construction Management and Economics, pp. 37-41.
[67] Salling,K.B; Leleur,S. (2011). Transport appraisal and Monte Carlo simulation by use of the CBA-DK model; Transport Policy; 18, pp. 236–245
[68] Montes,G.M; Prados Martin,E; Alegre Bayo,J; Ordonez ˜ Garcia,J. (2011). The applicability of computer simulation usingMonte Carlo techniques in windfarm profitability analysis; Renewable and Sustainable Energy Reviews; 15, pp. 4746–4755.
[69] Savvides, S. (1994). Risk analysis in investment appraisal; beech tree;1, pp. 3-18
[70] Arnold,U; Yildiz,O. (2015). Economic risk analysis of decentralized renewable energy infrastructures e A Monte Carlo Simulation approach; Renewable Energy.
[71] Taillandier, Franck. Taillandier, Patrick. Tepeli, Esra. Breysse, Denys. Mehdizadeh, Rasool. Khartabil, Fadi. (2015). A multi-agent model to manage risks in construction project (SMACC). Automation in Construction, V 58, pp. 1–18.  
[72] Amigun,B; Petrie,D; Görgens,J. (2011). Economic risk assessment of advanced process technologies for bioethanol production in South Africa: Monte Carlo analysis; Renewable Energy; 36. Pp. 3178-3186.
[73] Li,C.B; Lu,G.S; Wu,S. (2013). The investment risk analysis of wind power project in China”; Renewable Energy; 50, pp. 481-487.
[74] Andreas M Svennebring, Jarl ES Wikberg. (2013) . Net present value approaches for drug discovery. Springerplus. 2: 140.
[75] Kadir Kuru & Deniz Artan. (2020). A canvas model for risk assessment and performance estimation in public–private partnerships mation in public–private partnerships. International Journal of Construction Management .20(6).
[76] Abdelgawad, M.; Fayek, A. (2010). Risk management in the construction industry using combined fuzzy FMEA and fuzzy AHP. Journal of Construction Engineering and Management, V136(9): pp. 1028–1036.
[77] Hoff, P.D. (2009). A First Course in Bayesian Statistical Methods. Springer-Verlag. New York.
[78] Hongyu Jin, Shijing Liu, Chunlu Liu, Nilupa Udawatta. (2019). Optimizing the concession period of PPP projects for fair allocation of financial risk. Engineering, Construction and Architectural Management. 26(10).