بررسی تاثیر استفاده از افزودنی های میکرونیزه تکتوسیلیکاتی بر بهبود خواص فیزیکی و مکانیکی اندود سنتی کاهگل

نوع مقاله : علمی - پژوهشی

نویسندگان

1 دانشجوی دکتری مرمت آثار تاریخی و فرهنگی، دانشگاه هنر اصفهان، اصفهان، ایران

2 استاد، دانشگاه صنعتی اصفهان، اصفهان، ایران

3 دانشیار، دانشگاه هنر اصفهان، اصفهان، ایران

4 دانشیار، دانشگاه صنعتی اصفهان، اصفهان، ایران

چکیده

کاهگل یکی از قدیمی‌ترین ملات‌های سنتی ایران است که قابلیت‌ها و تجربیات استفاده از آن در طول تاریخ، نشان‌دهنده آن است که می‌توان از آن، به عنوان یک پوشش مناسب برای حفاظت ساختارهای معماری خاکی استفاده نمود ولی لزوم تجدید دائمی آن، پس از هر بار فرسایش در مقابل بارندگی، حکایت از ناپایداری آن در مقابل رطوبت دارد؛ بنابراین یافتن روشهای علمی مناسب به منظور افزایش دوام و طول عمر مفید اندود کاهگل، بسیار ضروری به نظر می‌رسد. بررسی تاثیر مواد افزودنی مختلف تکتوسیلیکاتی میکرونیزه در ترکیب با ملات کاهگل به منظور افزایش دوام آن، نشان داد که با استفاده از 3 درصد افزودنی تکتوسیلیکاتی 45 میکرون میکروسیلیس تا 20 درصد، با زئولیت تا 6/85 درصد و با فلدسپات میکرونیزه تا 73 درصد می‌توان ضریب نفوذپذیری کاهگل را کاهش داد. به علاوه، افزودن 3 درصد وزنی میکروسیلیس، زئولیت و فلدسپات میکرونیزه 45 میکرون، مقاومت فشاری کاهگل را نیز نسبت به نمونه‌های شاهد به ترتیب تا 5/73، 36 و 5/71 درصد ارتقاءمی‌دهد. از سوی دیگر، ارزیابی میزان دوام نمونه‌های آزمایشگاهی تحت بارش مصنوعی با دستگاه شبیه‌ساز باران نشان داد که استفاده از 3 درصد وزنی میکروسیلیس، زئولیت و فلدسپات، میزان هدر رفت ماده جامد در نمونه‌ها را به ترتیب تا 8/15، 34 و 5/10 درصد کاهش و دوام آنها را در مقابل فرسایش ناشی از بارندگی افزایش می‌دهد. این مطالعات بیانگر آن است که با کاهش اندازه ذرات و دانه‌بندی ماده افزودنی، میزان تاثیر مثبت آنها نیز در بهبود خواص فیزیکی و مکانیکی ملات کاهگل افزایش می‌یابد. این مطالعات همچنین نشان داد که درصد بهینه استفاده از مواد افزودنی تکتوسیلیکاتی میکرونیزه برای بهسازی اندود کاهگل 3 درصد وزنی است و افزایش میزان ماده افزودنی، تاثیر چندانی در ادامه روند بهسازی خواص فیزیکی و مکانیکی کاهگل ندارد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

The effect of tectosilicates micronized additives on physical and mechanical properties improvements of Cob (Kahgel) plaster

نویسندگان [English]

  • Masoud Bater 1
  • Jahangir Abedi 2
  • Hossein Ahmadi 3
  • Rahmatoolah Emadi 4
1 PhD Student, Department of Conservation and Restoration of Cultural Properties, Art University of Isfahan, Isfahan, Iran
2 Professor, Isfahan University of Technology, Isfahan, Iran
3 Associate Professor, Isfahan University of Art. Isfahan, Iran
4 Associate Professor, Isfahan University of Technology, Isfahan, Iran
چکیده [English]

Kahgel (Cob) is one of the oldest traditional mortars in Iran. Kahgel plaster consists of high clay content, dried mud and a portion of straw fibers to defend the mortar against shrinkage cracks. The ancient waterproof covering is very efficient at protecting the building dry during the heavy rain showers, but low durability and the need for renewal of plaster due to erosion of rainfall suggest that Kahgel plaster is weak and unstable. So, it is very essential and necessary in finding appropriate scientific methods to enhance the durability and lifespan of Kahgel plaster. Studies on the stabilization and improvement of Kahgel plaster properties indicated that using some special tectosilicatesadditives can be improved significantly the physical and mechanical properties of earth and earthen materials such as Kahgel plaster. The effect of different micronized tectosilicatesadditives used to build the different samples of Kahgel plaster on physical and mechanical properties to enhance the durability of Kahgel plaster showed that Microsilica at 6% (by weight of Khahgel), reduced hydraulic conductivity of the Kahgel plaster at 33% level and micronizedZeolite at 3% (by weight of Khahgel), is increased by 85%.  In addition Microsilica and micronizedZeolite at 3% (by weight of Khahgel), increased compression strength of the Kahgel plaster at 73% and 36%, respectively. In addition micronized Kaolin and Bentonite, increased uniaxial compression strength of the Kahgel plaster at 39 % and 33 %, respectively. In addition evaluation of water erosion of  the samples during rainfall by rainfall simulator showed that use of Microsilica, Feldspar, Zeolite and Kaolin 3% (by weight of Khahgel), the minimum sample’s total dry material loss of the Kahgel plaster reduced to 10/5% and the maximum decrease to 37/7%  and increase durability of the Kahgel plaster against water erosion. Experimental results indicated that in addition to the type and percentage of additives, particle size plays an important role on the physical and mechanical properties of Kahgel plaster.

کلیدواژه‌ها [English]

  • Earthen architecture Kahgel
  • Micronized additives
  • Tectosilicates
  • Conservation
[1] Pieris, S. (1993). Earthen architecture. International scientific committee. Seri Lanka: ICOMOS.
[2] Dethier, J. (1982). Down to earth: mud architecture, an old idea, a new future: based on an exhibition at the Centre Georges Pompidou. Thames and Hudson.
[3] Morris, J. & Booysen, Q. (2000). Earth construction in Africa, Proceedings: strategies for a sustainable Built Environment, Pretoria, 23-25.
[4]Adam, E. A. & Agib, A. R. A. (2001). Compressed Stabilized Earth Block Manufacture in Sudan. France, Paris: Printed by Graphoprint for the United Nations Educational, Scientific and Cultural Organization, UNESCO.
[5] Zami, M. S., & Lee, A. (2002). Contemporary earth construction in urban housing-stabilised or unstabilised?. Proceedings: Strategies for a Sustainable Built Environment, Pretoria, South Africa, 23-25.
[6] Minke, G. (2000). Earth construction handbook: the building material earth in modern architecture. WIT Press; Computational Mechanics,
[7] Houben, Hugo; Guillaud, Hubert. (1994). Earth Construction: A Comprehensive Guide, London,: Intermediate technology Publications.
[8] Alva balderrame, Alejandro. (2001). Earthen architecture. Los Angeles: The Getty conservation institute Newsletter, 16(1).
[9] Keefe, L. (2005). Earth building: methods and materials, repair and conservation. London and New York: Taylor & Francis.
[10] Fratini, F., Pecchioni, E., Rovero, L., & Tonietti, U. (2011). The earth in the architecture of the historical centre of Lamezia Terme (Italy): characterization for restoration. Applied Clay Science, 53(3), 509-516.
[11] Roy, Sangeeta, Chowdhury, Swaptik. (2013). Earth as an Energy Efficient and Sustainable Building Material. International Journal of Chemical, Environmental & Biological Sciences (IJCEBS) 1(2) 248-252.
[12] Warren, J. (1999). Conservation of earth structures. Butterworth-Heinemann.
[13] Gandreau, D, Delboy, L. (2010). Patrimoine mondial, Inventaire et situation des biens construits en terre, sous la direction de: Joffroy, T., Paris: CRAterre-ENSAG, UNESCO/CH/CPM.
[14] Anger, R., Fontaine, L., Joffroy, T., & Ruiz, E. (2011). Earthen construction, another way to house the planet. Private Sector & Development, (10), 18-21.
[15] Maheri, Mahmoud R., Maheri, Alireza, Pourfallah, Saeed, Azarm, Ramin, & Hadjipour, Akbar. (2011). Improving the Durability of Straw-Reinforced Clay Plaster Cladding for Earthen Buildings. International Journal of Architectural Heritage, 5(3), 349-366.
]16] Nwankwor, N. A. (2011). Justification for the Combination of Organic and Inorganic Stabilizers to Stabilize Traditional Earth Materials (Mud) for Quality and Capacity Utilization in Africa. In Terra 2008: The 10th International Conference on the Study and Conservation of Earthen Architectural Heritage, Getty Publications, 239-246.
[17] Rahimnia, R & Heidari Bani, D. (2011). The Effect of Plasticity Index (PI) on the Tensile and Compressive Strength of Cement-Stabilized Adobes for Conservation of Adobe Structures. Journal of conservation studies and cultural sites research, 1 (2), 91-102.
[18] Alavéz-Ramírez., R, Montes-García, P., Martínez-Reyes, J., Altamirano-Juárez, D. C., & Gochi-Ponce, Y. (2012). The use of sugarcane bagasse ash and lime to improve the durability and mechanical properties of compacted soil blocks. Construction and Building Materials, 34, 296-305.
[19] Miqueleiz, L; Ramirez, F; Oti, J.E; Seco, A; Kinuthia, J.M; Oreja, I & Urmeneta, P. (2013). Alumina filler waste as clay replacement material for unfired brick production. Engineering Geology, 163, 68–74.
[20] Eires, R., Aires Camões, & Said Jalali (2013). Earth architecture: ancient and new methods for durability improvement. ICSA2013-2nd International Conference on Structures and Architecture. CRC Press Taylor & Francis Group, 962-970.
[21] Trivedi, Jyoti S., Sandeep Nair, and Chakradhar Iyyunni. (2013). Optimum utilization of fly ash for stabilization of sub-grade soil using genetic algorithm. Procedia Engineering 51, 250-258.
[22] Anupam, Aditya Kumar, and Praveen Kumar. (2013). Use of Various Agricultural and Industrial Waste Materials in Road Construction. Procedia-Social and Behavioral Sciences, 104, 264-273.
[23] El-Mahllawy, Medhat S., and Ayman M. Kandeel. (2014). Engineering and mineralogical characteristics of stabilized unfired montmorillonitic clay bricks. HBRC Journal, 10)1(, 82-91.
[24] Georgiev, G., W. Theuerkorn, M. Krus, R. Kilian, & T. Grosskinsky. (2014). the potential role of cattail-reinforced clay plaster in sustainable building. Mires and Peat, 13, 1-13.
[25] Hejazi M, Hashemi M, Jamalinia E, Batavani M. (2015). Effect of Additives on Mechanical Strengths of Adobe Made From Soils of Isfahan. Journal of Housing and Rural Environment, 34 (151), 67-80.
[26] Zhang, J; Chen, W; Li, Z; Wang, X; Guo, Q & Wang, N. (2015). Study on workability and durability of calcined ginger nuts-based grouts used in anchoring conservation of earthen sites. Journal of Cultural Heritage, 16, 831–837.
[27] Corrêa, Andréa Aparecida Ribeiro, Lourival Marin Mendes, Normando Perazzo Barbosa, Thiago de Paula Protásio, Nathalia de Aguiar Campos, & Gustavo Henrique Denzin Tonoli. (2015). Incorporation of bamboo particles and “synthetic termite saliva” in adobes. Construction and Building Materials, 98, 250-256.
[28] Sharma, Vandna, Hemant K. Vinayak, and Bhanu M. Marwaha (2015). Enhancing sustainability of rural adobe houses of hills by addition of vernacular fiber reinforcement. International Journal of Sustainable Built Environment, 4(2), 348-358.
[29] Calatan, Gabriela, G., Hegyi, A., Dico, C., & Mircea, C. (2016). Determining the Optimum Addition of Vegetable Materials in Adobe Bricks. Procedia Technology, 22, 259-265.