Reinforcement of structures with concrete moment frame system by yielding metal damper with optimal cross section

Document Type : Original Article

Authors

1 Department of Civil Engineering, College of Engineering, Kermanshah Branch, Islamic Azad University, Kermanshah, Iran

2 Department of civil engineering , Islamic Azad University, Ramsar Branch , Ramsar, Iran

Abstract

Reinforcement of structures with concrete moment frame system by submitting metal damper with optimal cross section has been done in the present study. To investigate the effect of damping on the behavior of the structure, the structural system with the proposed damper was compared with three types of bearing systems of different structures of concrete moment frame, concrete shear wall and bracing with different number of floors 8, 14 and 20. In this study, 4 groups of concrete structures were studied and compared in terms of lateral bearing system, including medium concrete moment frame with behavior coefficient (R = 5), medium concrete moment frame with shear wall with medium ductility, concrete moment frame with Medium ductility with EBF steel brace and Medium ductility concrete moment frame with EBF steel brace Equipped with yielding metal damper. The studied structures have building frames with dimensions of 25 x 25 meters, which are modeled on 8th, 14th and 20th floors. Each dimension of the structure in the plan has 5 openings with lengths of meters. In modeling structures with dampers, four types of dampers modeled with 4, 6, 8 and 10 flowing plates in the damper have been used. By comparing them, it has been determined that the damping with 10 flowing plates has better performance and the results of that structure in Comparison with other systems was used. In 8-story models, the maximum final displacement in the brace was 17% higher than in the damper. The 8-story structure with dampers not only withstood the highest shear but also had the best performance compared to other systems. The results show that in structures with a low number of floors, the use of the system with the proposed damper is more appropriate and in medium structures, the shear wall system has a better performance.

Keywords

Main Subjects


  • غلامپور, سیروس, ناصری, علی, متولی, غزاله. (1397). تاثیر میراگرTADAS در سازه های فولادی تحت زلزله حوزه دور و نزدیک گسل. نشریه مهندسی سازه و ساخت doi: 10.22065/jsce.2019.119969.1475
  • هویدایی, نادر, میرزاپور, میثم, کاردان, نازیلا. (1398). ارزیابی اثر میراگرهای مایع تنظیم شده(TLD) و تنظیم شده ی اصلاحی(MTLD) بر رفتار لرزه‌ای قابهای خمشی فولادی. نشریه مهندسی سازه و ساخت doi: 10.22065/jsce.2019.165876.1756
  • وهدانی, رضا, خزائی, محسن, خیرالدین, علی. (1399). تعیین موقعیت بهینه میراگرهای جرمی تنظیم شده چندگانه در ساختمانهای فولادی منظم و نامنظم در پلان تحت زلزله های دور و نزدیک گسل. نشریه مهندسی سازه و ساختdoi: 10.22065/jsce.2020.207567.1995
  • Bayat, K., & Shekastehband, B. (2019). Seismic performance of beam to column connections with T-shaped slit dampers. Thin-Walled Structures, 141, 28-46.
  • NourEldin, M., Naeem, A., & Kim, J. (2019). Life-cycle cost evaluation of steel structures retrofitted with steel slit damper and shape memory alloy–based hybrid damper. Advances in Structural Engineering, 22(1), 3-16.
  • Liu, Y., et al. (2019). An innovative resilient rocking column with replaceable steel slit dampers: Experimental program on seismic performance. Engineering Structures, 183, 830-840.
  • Khoshkroodi, A., & Sani, H. P. (2019). Evaluation of Friction-Slit Hybrid Dampers in MR Steel Frames.
  • Zabihi-Samani, M. (2019). Design of Optimal Slit Steel Damper Under Cyclic Loading for Special Moment Frame by Cuckoo Search. International Journal of Steel Structures, 1-12.
  • Chen, Y., Chen, C., Jiang, H., Liu, T., & Wan, Z. (2019). Study of an innovative graded yield metal damper. Journal of Constructional Steel Research, 160, 240-254.
  • Zhai, Z., Guo, W., Yu, Z., He, C., & Zeng, Z. (2020). Experimental and numerical study of S-shaped steel plate damper for seismic resilient application. Engineering Structures, 221, 111006.
  • Xu, W., Wang, S., Liu, W., & Du, D. (2020). Experimental Study on Mechanical Properties of Shear-type Mild Steel Damper.
  • Kazemi, M., Kafi, M. A., Hajforoush, M., & Kheyroddin, A. (2020). Cyclic behaviour of steel ring filled with compressive plastic or concrete, installed in the concentric bracing system. Asian Journal of Civil Engineering, 21(1), 29-39.
  • Khoshvatan, M. Nouri, E. Ganji Morad, S (2021). Investigation of the Effect of Using Slit Dampers on the Seismic Behavior of Steel Structures of Moment Frame. 14 No. 1. 56-78.
  • Lee, K. S., Lee, B. G., & Jung, J. S. (2021). Nonlinear dynamic response of R/C buildings strengthened with novel stud-typed seismic control system using non-buckling slit damper. Engineering Structures244, 112749.
  • Oh, S. H., Kim, Y. J., & Ryu, H. S. (2009). Seismic performance of steel structures with slit dampers. Engineering structures, 31(9), 1997-2008.
  • ASCE (2017). Minimum Design Loads and Associated Criteria for Buildings and Other Structures. American Society of Civil Engineers, Reston, VA.
  • آیین نامه طراحی ساختمان ها در برابر زلزله، استاندارد 2800، ویرایش 4، 1393.
  • FEMA 440, Improvement of nonlinear static seismic analysis procedures, Prepared by ATC (ATC-55 project), 2005