Evaluation of parametric study of mixture proportions on the tensile strength regression-based model of concrete containing recycled construction waste

Document Type : Original Article

Authors

1 Assistant professor, Pardisan University of Fereydonkenar, Fereydonkenar, Iran

2 Civil Engineering Department, Tabari University, Babol, Iran

3 M. Sc. Student, Department of Civil Engineering, Tabari university, Babol, Iran

Abstract

Restricting resources and maintaining environmental quality has inevitably required the recycling of materials. Concrete is one of the most attractive building materials for recycling. The waste concrete can be crushed again, used as aggregate in the manufacture of concrete. In this study, for the modeling of compressive strength of concrete containing recycled aggregate, two formula-based regression methods named multivariate adaptive regression splines (MARS) was used. Mixing data from the research background to create suggested models, 239 laboratory data was compiled to estimate tensile strength of recycled concrete for parametric investigation. Then, two scenarios based on volumetric/weighted and ratio variables were defined to determine the best input parameters for the model using mallow’s technique. Among which a scenario including volumetric/weighted content, based on three statistical error indices including correlation coefficient (R), Root mean square error (RMSE) and mean absolute error (MAE) were selected as the best scenario. In this study, to determine the best model for estimating the compressive strength of recycled concrete by means of error statistics, it was determined that the correlation coefficient (R) in the training stage for MARS 0.973 and 0.903. Also. The RMSE statistical value for the proposed model MARS this stage was 16.176. In the testing phase, the MARS method was better than the M5p method. The results of uncertainty analysis indicated that the proposed method had a predicted mean error with very little distance in the semester. In addition, among the proposed smart methods, the MARS base on volumetric/weighted content approach was chosen for parametric analysis.

Keywords

Main Subjects


  1.  

    1. Etxeberria, M., Vázquez, E., Marí, A., & Barra, M. (2007). Influence of amount of recycled coarse aggregates and production process on properties of recycled aggregate concrete. Cement and concrete research, 37(5), 735-742.
    2. Padmini, A. K., Ramamurthy, K., & Mathews, M. S. (2009). Influence of parent concrete on the properties of recycled aggregate concrete. Construction and Building Materials, 23(2), 829-836.
    3. Sagoe-Crentsil, K. K., Brown, T., & Taylor, A. H. (2001). Performance of concrete made with commercially produced coarse recycled concrete aggregate. Cement and concrete research, 31(5), 707-712.
    4. Kou, S. C., & Poon, C. S. (2012). Enhancing the durability properties of concrete prepared with coarse recycled aggregate. Construction and Building Materials, 35, 69-76.
    5. Abd, Abbas M., and Suhad M. Abd. "Modelling the strength of lightweight foamed concrete using support vector machine (SVM)." Case Studies in Construction Materials 6 (2017): 8-15.
    6. Duan, Z. H., Kou, S. C., & Poon, C. S. (2013). Prediction of compressive strength of recycled aggregate concrete using artificial neural networks. Construction and Building Materials, 40, 1200-1206.
    7. Ashrafian, A., Amiri, M. J. T., Rezaie-Balf, M., Ozbakkaloglu, T., & Lotfi-Omran, O. (2018). Prediction of compressive strength and ultrasonic pulse velocity of fiber reinforced concrete incorporating nano silica using heuristic regression methods. Construction and Building Materials, 190, 479-494.
    8. Asteris, P. G., Ashrafian, A., & Rezaie-Balf, M. (2019). Prediction of the compressive strength of self-compacting concrete using surrogate models. Computers and Concrete, 24(2), 137-150.
    9. Golafshani, E. M., Behnood, A., & Arashpour, M. (2020). Predicting the compressive strength of normal and High-Performance Concretes using ANN and ANFIS hybridized with Grey Wolf Optimizer. Construction and Building Materials, 232, 117266.
    10. Dao, D. V., Ly, H. B., Trinh, S. H., Le, T. T., & Pham, B. T. (2019). Artificial intelligence approaches for prediction of compressive strength of geopolymer concrete. Materials, 12(6), 983.
    11. .Friedman JH. Multivariate adaptive regression splines. Ann Stat(1991);19:1–141.
    12. Domingo-Cabo, A., Lázaro, C., López-Gayarre, F., Serrano-López, M. A., Serna, P., & Castaño-Tabares, J. O. (2009). Creep and shrinkage of recycled aggregate concrete. Construction and Building Materials, 23(7), 2545-2553.
    13. Gonzalez-Fonteboa, B., Martinez-Abella, F., Eiras-Lopez, J., & Seara-Paz, S. (2011). Effect of recycled coarse aggregate on damage of recycled concrete. Materials and structures, 44(10), 1759.
    14. JACOB, L. L. G. (2011). Effects of Recycled Aggregates on Concrete Properties (Doctoral dissertation).
    15. Casuccio, M., Torrijos, M. C., Giaccio, G., & Zerbino, R. (2008). Failure mechanism of recycled aggregate concrete. Construction and Building Materials, 22(7), 1500-1506.
    16. Etxeberria, M., Vázquez, E., Marí, A., & Barra, M. (2007). Influence of amount of recycled coarse aggregates and production process on properties of recycled aggregate concrete. Cement and concrete research, 37(5), 735-742.
    17. Rao, M. C., Bhattacharyya, S. K., & Barai, S. V. (2011). Influence of field recycled coarse aggregate on properties of concrete. Materials and Structures, 44(1), 205-220.
    18. Yang, K. H., Chung, H. S., & Ashour, A. F. (2008). Influence of Type and Replacement Level of Recycled Aggregates on Concrete Properties.
    19. Kou, S. C., & Poon, C. S. (2008). Mechanical properties of 5-year-old concrete prepared with recycled aggregates obtained from three different sources. Magazine of Concrete Research, 60(1), 57-64
    20. Zheng, C., Lou, C., Du, G., Li, X., Liu, Z., & Li, L. (2018). Mechanical properties of recycled concrete with demolished waste concrete aggregate and clay brick aggregate. Results in Physics, 9, 1317-1322
    21. Vieira, J. P. B., Correia, J. R., & De Brito, J. (2011). Post-fire residual mechanical properties of concrete made with recycled concrete coarse aggregates. Cement and Concrete Research, 41(5), 533-541.
    22. Alengaram, U. J., Salam, A., Jumaat, M. Z., Jaafar, F. F., & Saad, H. B. (2011). Properties of high-workability concrete with recycled concrete aggregate. Materials Research, 14(2), 248-255
    23. Duan, Z. H., & Poon, C. S. (2014). Properties of recycled aggregate concrete made with recycled aggregates with different amounts of old adhered mortars. Materials & Design, 58, 19-29
    24. Folino, P., & Xargay, H. (2014). Recycled aggregate concrete–mechanical behavior under uniaxial and triaxial compression. Construction and Building Materials, 56, 21-31.
    25. Kotrayothar, D. (2012). Recycled aggregate concrete for structural applications (Doctoral dissertation, University of Western Sydney).
    26. Thomas, J., Thaickavil, N. N., & Wilson, P. M. (2018). Strength and durability of concrete containing recycled concrete aggregates. Journal of Building Engineering, 19, 349-365
    27. Zega, C. J., & Di Maio, A. A. (2009). Recycled concrete made with different natural coarse aggregates exposed to high temperature. Construction and building materials, 23(5), 2047-2052.